1,330 research outputs found

    Decision making in dynamic and interactive environments based on cognitive hierarchy theory, Bayesian inference, and predictive control

    Full text link
    In this paper, we describe an integrated framework for autonomous decision making in a dynamic and interactive environment. We model the interactions between the ego agent and its operating environment as a two-player dynamic game, and integrate cognitive behavioral models, Bayesian inference, and receding-horizon optimal control to define a dynamically-evolving decision strategy for the ego agent. Simulation examples representing autonomous vehicle control in three traffic scenarios where the autonomous ego vehicle interacts with a human-driven vehicle are reported.Comment: 2019 IEEE Conference on Decision and Contro

    Collision Probabilities for Continuous-Time Systems Without Sampling [with Appendices]

    Full text link
    Demand for high-performance, robust, and safe autonomous systems has grown substantially in recent years. Fulfillment of these objectives requires accurate and efficient risk estimation that can be embedded in core decision-making tasks such as motion planning. On one hand, Monte-Carlo (MC) and other sampling-based techniques can provide accurate solutions for a wide variety of motion models but are cumbersome to apply in the context of continuous optimization. On the other hand, "direct" approximations aim to compute (or upper-bound) the failure probability as a smooth function of the decision variables, and thus are widely applicable. However, existing approaches fundamentally assume discrete-time dynamics and can perform unpredictably when applied to continuous-time systems operating in the real world, often manifesting as severe conservatism. State-of-the-art attempts to address this within a conventional discrete-time framework require additional Gaussianity approximations that ultimately produce inconsistency of their own. In this paper we take a fundamentally different approach, deriving a risk approximation framework directly in continuous time and producing a lightweight estimate that actually improves as the discretization is refined. Our approximation is shown to significantly outperform state-of-the-art techniques in replicating the MC estimate while maintaining the functional and computational benefits of a direct method. This enables robust, risk-aware, continuous motion-planning for a broad class of nonlinear, partially-observable systems.Comment: To appear at RSS 202

    Behavioral Theory for Stochastic Systems? A Data-driven Journey from Willems to Wiener and Back Again

    Full text link
    The fundamental lemma by Jan C. Willems and co-workers, which is deeply rooted in behavioral systems theory, has become one of the supporting pillars of the recent progress on data-driven control and system analysis. This tutorial-style paper combines recent insights into stochastic and descriptor-system formulations of the lemma to further extend and broaden the formal basis for behavioral theory of stochastic linear systems. We show that series expansions -- in particular Polynomial Chaos Expansions (PCE) of L2L^2-random variables, which date back to Norbert Wiener's seminal work -- enable equivalent behavioral characterizations of linear stochastic systems. Specifically, we prove that under mild assumptions the behavior of the dynamics of the L2L^2-random variables is equivalent to the behavior of the dynamics of the series expansion coefficients and that it entails the behavior composed of sampled realization trajectories. We also illustrate the short-comings of the behavior associated to the time-evolution of the statistical moments. The paper culminates in the formulation of the stochastic fundamental lemma for linear (descriptor) systems, which in turn enables numerically tractable formulations of data-driven stochastic optimal control combining Hankel matrices in realization data (i.e. in measurements) with PCE concepts.Comment: 30 pages, 8 figure

    ToyArchitecture: Unsupervised Learning of Interpretable Models of the World

    Full text link
    Research in Artificial Intelligence (AI) has focused mostly on two extremes: either on small improvements in narrow AI domains, or on universal theoretical frameworks which are usually uncomputable, incompatible with theories of biological intelligence, or lack practical implementations. The goal of this work is to combine the main advantages of the two: to follow a big picture view, while providing a particular theory and its implementation. In contrast with purely theoretical approaches, the resulting architecture should be usable in realistic settings, but also form the core of a framework containing all the basic mechanisms, into which it should be easier to integrate additional required functionality. In this paper, we present a novel, purposely simple, and interpretable hierarchical architecture which combines multiple different mechanisms into one system: unsupervised learning of a model of the world, learning the influence of one's own actions on the world, model-based reinforcement learning, hierarchical planning and plan execution, and symbolic/sub-symbolic integration in general. The learned model is stored in the form of hierarchical representations with the following properties: 1) they are increasingly more abstract, but can retain details when needed, and 2) they are easy to manipulate in their local and symbolic-like form, thus also allowing one to observe the learning process at each level of abstraction. On all levels of the system, the representation of the data can be interpreted in both a symbolic and a sub-symbolic manner. This enables the architecture to learn efficiently using sub-symbolic methods and to employ symbolic inference.Comment: Revision: changed the pdftitl
    corecore