1,361 research outputs found

    Three Dimensional Tissue Motion Analysis from Tagged Magnetic Resonance Imaging

    Get PDF
    Motion estimation of soft tissues during organ deformation has been an important topic in medical imaging studies. Its application involves a variety of internal and external organs including the heart, the lung, the brain, and the tongue. Tagged magnetic resonance imaging has been used for decades to observe and quantify motion and strain of deforming tissues. It places temporary noninvasive markers—so called "tags"—in the tissue of interest that deform together with the tissue during motion, producing images that carry motion information in the deformed tagged patterns. These images can later be processed using phase-extraction algorithms to achieve motion estimation and strain computation. In this dissertation, we study three-dimensional (3D) motion estimation and analysis using tagged magnetic resonance images with applications focused on speech studies and traumatic brain injury modeling. Novel algorithms are developed to assist tagged motion analysis. Firstly, a pipeline of methods—TMAP—is proposed to compute 3D motion from tagged and cine images of the tongue during speech. TMAP produces an estimation of motion along with a multi-subject analysis of motion pattern differences between healthy control subjects and post-glossectomy patients. Secondly, an enhanced 3D motion estimation algorithm—E-IDEA—is proposed. E-IDEA tackles the incompressible motion both on the internal tissue region and the tissue boundaries, reducing the boundary errors and yielding a motion estimate that is more accurate overall. Thirdly, a novel 3D motion estimation algorithm—PVIRA—is developed. Based on image registration and tracking, PVIRA is a faster and more robust method that performs phase extraction in a novel way. Lastly, a method to reveal muscles' activity using strain in the line of action of muscle fiber directions is presented. It is a first step toward relating motion production with individual muscles and provides a new tool for future clinical and scientific use

    Fast upper airway magnetic resonance imaging for assessment of speech production and sleep apnea

    Get PDF
    The human upper airway is involved in various functions, including speech, swallowing, and respiration. Magnetic resonance imaging (MRI) can visualize the motion of the upper airway and has been used in scientific studies to understand the dynamics of vocal tract shaping during speech and for assessment of upper airway abnormalities related to obstructive sleep apnea and swallowing disorders. Acceleration technologies in MRI are crucial in improving spatiotemporal resolution or spatial coverage. Recent trends in technical aspects of upper airway MRI are to develop state-of-the-art image acquisition methods for improved dynamic imaging of the upper airway and develop automatic image analysis methods for efficient and accurate quantification of upper airway parameters of interest. This review covers the fast upper airway magnetic resonance (MR) acquisition and reconstruction, MR experimental issues, image analysis techniques, and applications, mainly with respect to studies of speech production and sleep apnea

    Analysis of myocardial contractility with magnetic resonance

    Get PDF
    Heart failure has considerable morbidity and poor prognosis. An understanding of the underlying mechanics governing myocardial contraction is a prerequisite for interpreting and predicting changes induced by heart disease. Gross changes in contractile behaviour of the myocardium are readily detected with existing techniques. For more subtle changes during early stages of cardiac dysfunction, however, it requires a sensitive method for measuring, as well as a precise criterion for quantifying, normal and impaired myocardial function. Cardiovascular Magnetic Resonance (CMR) imaging is emerging as an important clinical tool because of its safety, versatility, and the high quality images it produces that allow accurate and reproducible quantification of cardiac structure and function. Traditional CMR approaches for measuring contractility rely on tagging of the myocardium with fiducial markers and require a lengthy and often subjective dependant post-processing procedure. The aim of this research is to develop a new technique, which uses velocity as a marker for the visualisation and assessment of myocardial contractility. Two parallel approaches have been investigated for the assessment of myocardial velocity. The first of these is haimonic phase (HARP) imaging. HARP imaging allows direct derivation of myocardial velocity and strain without the need of further user interaction. We investigated the effect of respiration on the accuracy of the derived contractility, and assessed the clinical applicability and potential pitfalls of the technique by analysing results from a group of patients with hypertrophic cardiomyopathy. The second technique we have investigated is the direct measurement of myocardial velocity with phase contrast myocardial velocity mapping. The imaging sequence used employs effective blood saturation for reducing flow induced phase errors within the myocardium. View sharing was used to improve the temporal resolution, which permitted acquisition of 3D velocity information throughout the cardiac cycle in a single breath-hold, enabling a comprehensive assessment of strain rate of the left ventricle. One key factor that affects the derivation of myocardial contractility based on myocardial velocity is the practical inconsistency of the velocity data. A novel iterative optimisation scheme by incorporating the incompressibility constraint was developed for the restoration of myocardial velocity data. The method allowed accurate assessment of both in-plane and through-plan strain rates, as demonstrated with both synthetic and in vivo data acquired from normal subjects and ischaemic patients. To further enhance the clinical potential of the technique and facilitate the visual assessment of contractile abnormality with myocardial velocity mapping, a complementary analysis framework, named Virtual Tagging, has been developed. The method used velocity data in all directions combined with a finite element mesh incorporating geometrical and physical constraints. The Virtual Tagging framewoik allowed velocity measurements to be used for calculating strain distribution within the 3D volume. It also permitted easy visualisation of the displacement of the tissue, akin to traditional CMR tagging. Detailed validation of the technique is provided, which involves both numerical simulation and in vitro phantom experiments. The main contribution of this thesis is in the improvement of the effectiveness and quality of quantitative myocardial contractility analysis from both sequence design and medical image computing perspectives. It is aimed at providing a sensitive means of detecting subtle as well as gross changes in contractile behaviour of the myocardium. The study is expected to provide a clinically viable platform for functional correlation with other functional measures such as myocardial perfusion and diffusion, and to serve as an aid for further understanding of the links between intrinsicOpen acces

    Tongue Movements in Feeding and Speech

    Get PDF
    The position of the tongue relative to the upper and lower jaws is regulated in part by the position of the hyoid bone, which, with the anterior and posterior suprahyoid muscles, controls the angulation and length of the floor of the mouth on which the tongue body \u27rides\u27. The instantaneous shape of the tongue is controlled by the \u27extrinsic muscles \u27 acting in concert with the \u27intrinsic \u27 muscles. Recent anatomical research in non-human mammals has shown that the intrinsic muscles can best be regarded as a \u27laminated segmental system \u27 with tightly packed layers of the \u27transverse\u27, \u27longitudinal\u27, and \u27vertical\u27 muscle fibers. Each segment receives separate innervation from branches of the hypoglosssal nerve. These new anatomical findings are contributing to the development of functional models of the tongue, many based on increasingly refined finite element modeling techniques. They also begin to explain the observed behavior of the jaw-hyoid-tongue complex, or the hyomandibular \u27kinetic chain\u27, in feeding and consecutive speech. Similarly, major efforts, involving many imaging techniques (cinefluorography, ultrasound, electro-palatography, NMRI, and others), have examined the spatial and temporal relationships of the tongue surface in sound production. The feeding literature shows localized tongue-surface change as the process progresses. The speech literature shows extensive change in tongue shape between classes of vowels and consonants. Although there is a fundamental dichotomy between the referential framework and the methodological approach to studies of the orofacial complex in feeding and speech, it is clear that many of the shapes adopted by the tongue in speaking are seen in feeding. It is suggested that the range of shapes used in feeding is the matrix for both behaviors

    Multimodal MRI analysis using deep learning methods

    Get PDF
    Magnetic resonance imaging (MRI) has been widely used in scientific and clinical research. It is a non-invasive medical imaging technique that reveals anatomical structures and provides useful information for investigators to explore aging and pathological processes. Different MR modalities offer different useful properties. Automatic MRI analysis algorithms have been developed to address problems in many applications such as classification, segmentation, and disease diagnosis. Segmentation and labeling algorithms applied to brain MRIs enable evaluations of the volumetric changes of specific structures in neurodegenerative diseases. Reconstruction of fiber orientations using diffusion MRI is beneficial to obtain better understanding of the underlying structures. In this thesis, we focused on development of deep learning methods for MRI analysis using different image modalities. Specifically, we applied deep learning techniques on different applications, including segmentation of brain structures and reconstruction of tongue muscle fiber orientations. For segmentation of brain structures, we developed an end-to-end deep learning algorithm for ventricle parcellation of brains with ventriculomegaly using T1-w MR images. The deep network provides robust and accurate segmentation results in subjects with high variability in ventricle shapes and sizes. We developed another deep learning method to automatically parcellate the thalamus into a set of thalamic nuclei using T1-w MRI and features from diffusion MRI. The algorithm incorporates a harmonization step to make the network adapt to input images with different contrasts. We also studied the strains associated with tongue muscles during speech production using multiple MRI modalities. To enable this study, we first developed a deep network to reconstruct crossing tongue muscle fiber orientations using diffusion MRI. The network was specifically designed for the human tongue and accounted for the orthogonality property of the tongue muscles. Next, we proposed a comprehensive pipeline to analyze the strains associated with tongue muscle fiber orientations during speech using diffusion MRI, and tagged and cine MRI. The proposed pipeline provides a solution to analyze the cooperation between muscle groups during speech production

    Functional MRI of the lower extremities

    Get PDF
    • …
    corecore