5,348 research outputs found

    Are all the frames equally important?

    Full text link
    In this work, we address the problem of measuring and predicting temporal video saliency - a metric which defines the importance of a video frame for human attention. Unlike the conventional spatial saliency which defines the location of the salient regions within a frame (as it is done for still images), temporal saliency considers importance of a frame as a whole and may not exist apart from context. The proposed interface is an interactive cursor-based algorithm for collecting experimental data about temporal saliency. We collect the first human responses and perform their analysis. As a result, we show that qualitatively, the produced scores have very explicit meaning of the semantic changes in a frame, while quantitatively being highly correlated between all the observers. Apart from that, we show that the proposed tool can simultaneously collect fixations similar to the ones produced by eye-tracker in a more affordable way. Further, this approach may be used for creation of first temporal saliency datasets which will allow training computational predictive algorithms. The proposed interface does not rely on any special equipment, which allows to run it remotely and cover a wide audience.Comment: CHI'20 Late Breaking Work

    Deep learning investigation for chess player attention prediction using eye-tracking and game data

    Get PDF
    This article reports on an investigation of the use of convolutional neural networks to predict the visual attention of chess players. The visual attention model described in this article has been created to generate saliency maps that capture hierarchical and spatial features of chessboard, in order to predict the probability fixation for individual pixels Using a skip-layer architecture of an autoencoder, with a unified decoder, we are able to use multiscale features to predict saliency of part of the board at different scales, showing multiple relations between pieces. We have used scan path and fixation data from players engaged in solving chess problems, to compute 6600 saliency maps associated to the corresponding chess piece configurations. This corpus is completed with synthetically generated data from actual games gathered from an online chess platform. Experiments realized using both scan-paths from chess players and the CAT2000 saliency dataset of natural images, highlights several results. Deep features, pretrained on natural images, were found to be helpful in training visual attention prediction for chess. The proposed neural network architecture is able to generate meaningful saliency maps on unseen chess configurations with good scores on standard metrics. This work provides a baseline for future work on visual attention prediction in similar contexts

    Multi-scale Discriminant Saliency with Wavelet-based Hidden Markov Tree Modelling

    Full text link
    The bottom-up saliency, an early stage of humans' visual attention, can be considered as a binary classification problem between centre and surround classes. Discriminant power of features for the classification is measured as mutual information between distributions of image features and corresponding classes . As the estimated discrepancy very much depends on considered scale level, multi-scale structure and discriminant power are integrated by employing discrete wavelet features and Hidden Markov Tree (HMT). With wavelet coefficients and Hidden Markov Tree parameters, quad-tree like label structures are constructed and utilized in maximum a posterior probability (MAP) of hidden class variables at corresponding dyadic sub-squares. Then, a saliency value for each square block at each scale level is computed with discriminant power principle. Finally, across multiple scales is integrated the final saliency map by an information maximization rule. Both standard quantitative tools such as NSS, LCC, AUC and qualitative assessments are used for evaluating the proposed multi-scale discriminant saliency (MDIS) method against the well-know information based approach AIM on its released image collection with eye-tracking data. Simulation results are presented and analysed to verify the validity of MDIS as well as point out its limitation for further research direction.Comment: arXiv admin note: substantial text overlap with arXiv:1301.396
    corecore