7 research outputs found

    Towards a Principled Integration of Multi-Camera Re-Identification and Tracking through Optimal Bayes Filters

    Full text link
    With the rise of end-to-end learning through deep learning, person detectors and re-identification (ReID) models have recently become very strong. Multi-camera multi-target (MCMT) tracking has not fully gone through this transformation yet. We intend to take another step in this direction by presenting a theoretically principled way of integrating ReID with tracking formulated as an optimal Bayes filter. This conveniently side-steps the need for data-association and opens up a direct path from full images to the core of the tracker. While the results are still sub-par, we believe that this new, tight integration opens many interesting research opportunities and leads the way towards full end-to-end tracking from raw pixels.Comment: First two authors have equal contribution. This is initial work into a new direction, not a benchmark-beating method. v2 only adds acknowledgements and fixes a typo in e-mai

    Applications of a Graph Theoretic Based Clustering Framework in Computer Vision and Pattern Recognition

    Full text link
    Recently, several clustering algorithms have been used to solve variety of problems from different discipline. This dissertation aims to address different challenging tasks in computer vision and pattern recognition by casting the problems as a clustering problem. We proposed novel approaches to solve multi-target tracking, visual geo-localization and outlier detection problems using a unified underlining clustering framework, i.e., dominant set clustering and its extensions, and presented a superior result over several state-of-the-art approaches.Comment: doctoral dissertatio

    Tracking The Untrackable: Learning To Track Multiple Cues with Long-Term Dependencies

    Get PDF
    The majority of existing solutions to the Multi-Target Tracking (MTT) problem do not combine cues in a coherent end-to-end fashion over a long period of time. However, we present an online method that encodes long-term temporal dependencies across multiple cues. One key challenge of tracking methods is to accurately track occluded targets or those which share similar appearance properties with surrounding objects. To address this challenge, we present a structure of Recurrent Neural Networks (RNN) that jointly reasons on multiple cues over a temporal window. We are able to correct many data association errors and recover observations from an occluded state. We demonstrate the robustness of our data-driven approach by tracking multiple targets using their appearance, motion, and even interactions. Our method outperforms previous works on multiple publicly available datasets including the challenging MOT benchmark

    Introduction: Ways of Machine Seeing

    Get PDF
    How do machines, and, in particular, computational technologies, change the way we see the world? This special issue brings together researchers from a wide range of disciplines to explore the entanglement of machines and their ways of seeing from new critical perspectives. This 'editorial' is for a special issue of AI & Society, which includes contributions from: María Jesús Schultz Abarca, Peter Bell, Tobias Blanke, Benjamin Bratton, Claudio Celis Bueno, Kate Crawford, Iain Emsley, Abelardo Gil-Fournier, Daniel Chávez Heras, Vladan Joler, Nicolas Malevé, Lev Manovich, Nicholas Mirzoeff, Perle Møhl, Bruno Moreschi, Fabian Offert, Trevor Paglan, Jussi Parikka, Luciana Parisi, Matteo Pasquinelli, Gabriel Pereira, Carloalberto Treccani, Rebecca Uliasz, and Manuel van der Veen

    Tracking social groups within and across cameras

    No full text
    We propose a method for tracking groups from single and multiple cameras with disjoint fields of view. Our formulation follows the tracking-by-detection paradigm where groups are the atomic entities and are linked over time to form long and consistent trajectories. To this end, we formulate the problem as a supervised clustering problem where a Structural SVM classifier learns a similarity measure appropriate for group entities. Multi-camera group tracking is handled inside the framework by adopting an orthogonal feature encoding that allows the classifier to learn inter- and intra-camera feature weights differently. Experiments were carried out on a novel annotated group tracking data set, the DukeMTMC-Groups data set. Since this is the first data set on the problem it comes with the proposal of a suitable evaluation measure. Results of adopting learning for the task are encouraging, scoring a +15% improvement in F1 measure over a non-learning based clustering baseline. To our knowledge this is the first proposal of this kind dealing with multi-camera group tracking

    Tracking Social Groups Within and Across Cameras

    No full text
    corecore