3 research outputs found

    Tracing Internet Path Transparency

    Get PDF
    This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 688421, and was supported by the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number 15.0268. The opinions expressed and arguments employed reflect only the authors’ views. The European Commission is not responsible for any use that may be made of that information. Further, the opinions expressed and arguments employed herein do not necessarily reflect the official views of the Swiss Government.Peer reviewedPublisher PD

    MUST, SHOULD, DON'T CARE: TCP Conformance in the Wild

    Full text link
    Standards govern the SHOULD and MUST requirements for protocol implementers for interoperability. In case of TCP that carries the bulk of the Internets' traffic, these requirements are defined in RFCs. While it is known that not all optional features are implemented and nonconformance exists, one would assume that TCP implementations at least conform to the minimum set of MUST requirements. In this paper, we use Internet-wide scans to show how Internet hosts and paths conform to these basic requirements. We uncover a non-negligible set of hosts and paths that do not adhere to even basic requirements. For example, we observe hosts that do not correctly handle checksums and cases of middlebox interference for TCP options. We identify hosts that drop packets when the urgent pointer is set or simply crash. Our publicly available results highlight that conformance to even fundamental protocol requirements should not be taken for granted but instead checked regularly

    ECN with QUIC: Challenges in the Wild

    Full text link
    TCP and QUIC can both leverage ECN to avoid congestion loss and its retransmission overhead. However, both protocols require support of their remote endpoints and it took two decades since the initial standardization of ECN for TCP to reach 80% ECN support and more in the wild. In contrast, the QUIC standard mandates ECN support, but there are notable ambiguities that make it unclear if and how ECN can actually be used with QUIC on the Internet. Hence, in this paper, we analyze ECN support with QUIC in the wild: We conduct repeated measurements on more than 180M domains to identify HTTP/3 websites and analyze the underlying QUIC connections w.r.t. ECN support. We only find 20% of QUIC hosts, providing 6% of HTTP/3 websites, to mirror client ECN codepoints. Yet, mirroring ECN is only half of what is required for ECN with QUIC, as QUIC validates mirrored ECN codepoints to detect network impairments: We observe that less than 2% of QUIC hosts, providing less than 0.3% of HTTP/3 websites, pass this validation. We identify possible root causes in content providers not supporting ECN via QUIC and network impairments hindering ECN. We thus also characterize ECN with QUIC distributedly to traverse other paths and discuss our results w.r.t. QUIC and ECN innovations beyond QUIC.Comment: Accepted at the ACM Internet Measurement Conference 2023 (IMC'23
    corecore