88,282 research outputs found

    Measurement of Pressure-Expansion Behaviour Required in Infant Airway Stents Using Digital Image Correlation (DIC) in Rabbit Trachea

    Get PDF
    INTRODUCTION: Airway stents are used during treatment of tracheal deformities in infants. However, complications including post implantation stent migration occur [1], resulting from too low stent radial stiffness, which causes permanent stent collapse. This collapse is partially controlled by the mechanical properties of the trachea. However, the mechanical behaviour of the human trachea is poorly understood [2]. A clearer understanding of this relationship should improve the long term performance of infant airway stents. Rabbit tracheas provide an appropriate model for neonates due to the similarities in size and shape [3]. Digital image correlation (DIC) compares the displacement of a random speckled pattern on the surface of a sample before and during deformation to compute mechanical strains [5]. The aim of this study was to determine the pressure-expansion characteristics of full length rabbit trachea using DIC and thereby predict the required mechanical properties for an infant airway stent. MATERIALS AND METHODS: Specimen preparation: Tracheas from New Zealand White rabbits (lengths 42.1±5.3mm, n=20), aged 13-16 weeks were dissected within 3hrs of sacrifice and immediately immersed in phosphate buffered saline and frozen. Prior to testing, samples were thawed and a random speckled pattern was produced on the surface of the trachea (Fig1A) using black ink (Higgins Black Magic, Water Proof Ink) superimposed on a white background (SupaDec Spray Paint). A balloon dilatation catheter (Ultrathin Diamond, Boston Scientific) connected to an inflation pump (Basix COMPAK Inflation syringe) was inserted through the tracheal cavity. DIC and loading regime: A Vic3D digital image correlation device (Rutherford Appleton Laboratory – really?? This is the supplier NOT the manufacturer) was used to record displacement vectors during tracheal expansion. Two high resolution cameras mounted onto a tripod were positioned so that the frontal surface of the trachea was visible to both cameras simultaneously, allowing 3D surface strain measurements. The balloon pressure was increased in increments of 0.2 atm (20kPa) while tracheal expansion was recorded. RESULTS: Axial/longitudinal strain (xx) for applied pressures of 0.2-1.0 atm increased from 0.0053- 0.01115 (Fig1b). DIC showed that deformation of the trachea by balloon dilatation was characterised by uneven expansion with higher Axial/longitudinal strain (yy) occurring distal to the balloon compared with the central zone of the trachea (Fig2). The tracheal expansion modulus at low strains was calculated to be 9.08MPa. Conclusions the DIC technique has the potential to provide accurate assessment of infant airway mechanics and prediction of pressure expansion properties required in paediatric tracheal stents

    Chloride channels regulate differentiation and barrier functions of the mammalian airway.

    Get PDF
    The conducting airway forms a protective mucosal barrier and is the primary target of airway disorders. The molecular events required for the formation and function of the airway mucosal barrier, as well as the mechanisms by which barrier dysfunction leads to early onset airway diseases, remain unclear. In this study, we systematically characterized the developmental landscape of the mouse airway using single-cell RNA sequencing and identified remarkably conserved cellular programs operating during human fetal development. We demonstrated that in mouse, genetic inactivation of chloride channel Ano1/Tmem16a compromises airway barrier function, results in early signs of inflammation, and alters the airway cellular landscape by depleting epithelial progenitors. Mouse Ano1-/-mutants exhibited mucus obstruction and abnormal mucociliary clearance that resemble the airway defects associated with cystic fibrosis. The data reveal critical and non-redundant roles for Ano1 in organogenesis, and show that chloride channels are essential for mammalian airway formation and function

    Vascularization of the trachea in the bottlenose dolphin: Comparison with bovine and evidence for evolutionary adaptations to diving

    Get PDF
    The rigid structure of the mammalian trachea is functional to maintain constant patency and airflow during breathing, but no gas exchange takes place through its walls. The structure of the organ in dolphins shows increased rigidity of the tracheal cartilaginous rings and the presence of vascular lacunae in the submucosa. However, no actual comparison was ever made between the size and capacity of the vascular lacunae of the dolphin trachea and the potentially homologous structures of terrestrial mammals. In the present study, the extension of the lacunae has been compared between the bottlenose dolphin and the bovine, a closely related terrestrial Cetartiodactyla. Our results indicate that the extension of the blood spaces in the submucosa of dolphins is over 12 times larger than in the corresponding structure of the bovines. Furthermore, a microscopic analysis revealed the presence of valve-like structures in the walls of the cetacean lacunae. The huge difference in size suggests that the lacunae are not merely a product of individual physiological plasticity, but may constitute a true adaptive evolutionary character, functional to life in the aquatic environment. The presence of valve-like structures may be related to the regulation of blood flow, and curtail excessive compression under baric stress at depth

    The morphological peculiarities of the glands of human trachea at the bifurcation of this organ

    Get PDF
    The aim of the investigation was to study the structurae peculiarites of the glands of human trachea at its bifurcation. The glands of te trachea from 52 people of different age and sex were studied by macro-mocroscopic methods. At the total preparationsof the trachea the multi cellular cells were coloured by R.D. Sinelnikov's method. The localization of the numerous glands at the cartilaginous and membranaceus walls of the trachea is different. Along the cartilaginous wall of the trachea the glands are arranged in one layer, but at the membranaceus wall- in thre layers. At the cartilaginous wall the initial parts of the glands are located at submucosa and fibrous membrane, at the membranaceus wall- at all layers of the trachea and principal bronchi. At the bifurcation of the trachea the initial parts of the glands from the glandular muff. The compactness of the localization of mouth of the glands is more at the bifurca¬tion of trachea than near this regio

    Radiographic measurements of the trachea in domestic short haired and Persian cats

    Get PDF
    Tracheal diameter can be assessed from a thoracic radiograph, with assessment of tracheal diameter in dogs based on ratios between tracheal diameter and a skeletal measurement – however reference ranges are not available for the cat. Tracheal narrowing may cause significant clinical problems, although tracheal hypoplasia in dogs may be clinically silent, and is rarely reported in cats (both mesati- and brachycephalic). The tracheal diameter and trachea:thoracic inlet and trachea:rib ratios were calculated for populations of Domestic Short Haired (DSH) (n=68) and Persian (n=40) cats. This gave reference ranges for radiographic tracheal measurements in these breeds. It is proposed that the tracheal diameter in a normal DSH cat should be 18% of the diameter of the thoracic inlet, and compared to 20% in Persian cats

    Tissue-specific expression of high-voltage-activated dihydropyridine-sensitive L-type calcium channels

    Get PDF
    The cloning of the cDNA for the α1 subunit of L-type calcium channels revealed that at least two genes (CaCh1 and CaCh2) exist which give rise to several splice variants. The expression of mRNA for these α1 subunits and the skeletal muscle α2/δ, β and γ subunits was studied in rabbit tissues and BC3H1 cells. Nucleic-acid-hybridization studies showed that the mRNA of all subunits are expressed in skeletal muscle, brain, heart and aorta. However, the α1-, β- and γ-specific transcripts had different sizes in these tissues. Smooth muscle and heart contain different splice variants of the CaCh2 gene. The α1, β and γ mRNA are expressed together in differentiated but not in proliferating BC3H1 cells. A probe specific for the skeletal muscle α2/δ subunit did not hybridize to poly(A)-rich RNA from BC3H1 cells. These results suggest that different splice variants of the genes for the α1, β and γ subunits exist in tissues containing L-type calcium channels, and that their expression is regulated in a coordinate manner
    corecore