2 research outputs found

    Benchmarking at the Frontier of Hardware Security: Lessons from Logic Locking

    Full text link
    Integrated circuits (ICs) are the foundation of all computing systems. They comprise high-value hardware intellectual property (IP) that are at risk of piracy, reverse-engineering, and modifications while making their way through the geographically-distributed IC supply chain. On the frontier of hardware security are various design-for-trust techniques that claim to protect designs from untrusted entities across the design flow. Logic locking is one technique that promises protection from the gamut of threats in IC manufacturing. In this work, we perform a critical review of logic locking techniques in the literature, and expose several shortcomings. Taking inspiration from other cybersecurity competitions, we devise a community-led benchmarking exercise to address the evaluation deficiencies. In reflecting on this process, we shed new light on deficiencies in evaluation of logic locking and reveal important future directions. The lessons learned can guide future endeavors in other areas of hardware security

    TimingCamouflage+: Netlist Security Enhancement with Unconventional Timing (with Appendix)

    Full text link
    With recent advances in reverse engineering, attackers can reconstruct a netlist to counterfeit chips by opening the die and scanning all layers of authentic chips. This relatively easy counterfeiting is made possible by the use of the standard simple clocking scheme, where all combinational blocks function within one clock period, so that a netlist of combinational logic gates and flip-flops is sufficient to duplicate a design. In this paper, we propose to invalidate the assumption that a netlist completely represents the function of a circuit with unconventional timing. With the introduced wave-pipelining paths, attackers have to capture gate and interconnect delays during reverse engineering, or to test a huge number of combinational paths to identify the wave-pipelining paths. To hinder the test-based attack, we construct false paths with wave-pipelining to increase the counterfeiting challenge. Experimental results confirm that wave-pipelining true paths and false paths can be constructed in benchmark circuits successfully with only a negligible cost, thus thwarting the potential attack techniques
    corecore