3,610 research outputs found

    Towards Practical Federated Causal Structure Learning

    Full text link
    Understanding causal relations is vital in scientific discovery. The process of causal structure learning involves identifying causal graphs from observational data to understand such relations. Usually, a central server performs this task, but sharing data with the server poses privacy risks. Federated learning can solve this problem, but existing solutions for federated causal structure learning make unrealistic assumptions about data and lack convergence guarantees. FedC2SL is a federated constraint-based causal structure learning scheme that learns causal graphs using a federated conditional independence test, which examines conditional independence between two variables under a condition set without collecting raw data from clients. FedC2SL requires weaker and more realistic assumptions about data and offers stronger resistance to data variability among clients. FedPC and FedFCI are the two variants of FedC2SL for causal structure learning in causal sufficiency and causal insufficiency, respectively. The study evaluates FedC2SL using both synthetic datasets and real-world data against existing solutions and finds it demonstrates encouraging performance and strong resilience to data heterogeneity among clients

    Achieving Differential Privacy and Fairness in Machine Learning

    Get PDF
    Machine learning algorithms are used to make decisions in various applications, such as recruiting, lending and policing. These algorithms rely on large amounts of sensitive individual information to work properly. Hence, there are sociological concerns about machine learning algorithms on matters like privacy and fairness. Currently, many studies only focus on protecting individual privacy or ensuring fairness of algorithms separately without taking consideration of their connection. However, there are new challenges arising in privacy preserving and fairness-aware machine learning. On one hand, there is fairness within the private model, i.e., how to meet both privacy and fairness requirements simultaneously in machine learning algorithms. On the other hand, there is fairness between the private model and the non-private model, i.e., how to ensure the utility loss due to differential privacy is the same towards each group. The goal of this dissertation is to address challenging issues in privacy preserving and fairness-aware machine learning: achieving differential privacy with satisfactory utility and efficiency in complex and emerging tasks, using generative models to generate fair data and to assist fair classification, achieving both differential privacy and fairness simultaneously within the same model, and achieving equal utility loss w.r.t. each group between the private model and the non-private model. In this dissertation, we develop the following algorithms to address the above challenges. (1) We develop PrivPC and DPNE algorithms to achieve differential privacy in complex and emerging tasks of causal graph discovery and network embedding, respectively. (2) We develop the fair generative adversarial neural networks framework and three algorithms (FairGAN, FairGAN+ and CFGAN) to achieve fair data generation and classification through generative models based on different association-based and causation-based fairness notions. (3) We develop PFLR and PFLR* algorithms to simultaneously achieve both differential privacy and fairness in logistic regression. (4) We develop a DPSGD-F algorithm to remove the disparate impact of differential privacy on model accuracy w.r.t. each group

    Causal Discovery Under Local Privacy

    Full text link
    Differential privacy is a widely adopted framework designed to safeguard the sensitive information of data providers within a data set. It is based on the application of controlled noise at the interface between the server that stores and processes the data, and the data consumers. Local differential privacy is a variant that allows data providers to apply the privatization mechanism themselves on their data individually. Therefore it provides protection also in contexts in which the server, or even the data collector, cannot be trusted. The introduction of noise, however, inevitably affects the utility of the data, particularly by distorting the correlations between individual data components. This distortion can prove detrimental to tasks such as causal discovery. In this paper, we consider various well-known locally differentially private mechanisms and compare the trade-off between the privacy they provide, and the accuracy of the causal structure produced by algorithms for causal learning when applied to data obfuscated by these mechanisms. Our analysis yields valuable insights for selecting appropriate local differentially private protocols for causal discovery tasks. We foresee that our findings will aid researchers and practitioners in conducting locally private causal discovery

    SoK: Differential Privacies

    Get PDF
    Shortly after it was first introduced in 2006, differential privacy became the flagship data privacy definition. Since then, numerous variants and extensions were proposed to adapt it to different scenarios and attacker models. In this work, we propose a systematic taxonomy of these variants and extensions. We list all data privacy definitions based on differential privacy, and partition them into seven categories, depending on which aspect of the original definition is modified. These categories act like dimensions: variants from the same category cannot be combined, but variants from different categories can be combined to form new definitions. We also establish a partial ordering of relative strength between these notions by summarizing existing results. Furthermore, we list which of these definitions satisfy some desirable properties, like composition, post-processing, and convexity by either providing a novel proof or collecting existing ones.Comment: This is the full version of the SoK paper with the same title, accepted at PETS (Privacy Enhancing Technologies Symposium) 202

    Enabling Runtime Verification of Causal Discovery Algorithms with Automated Conditional Independence Reasoning (Extended Version)

    Full text link
    Causal discovery is a powerful technique for identifying causal relationships among variables in data. It has been widely used in various applications in software engineering. Causal discovery extensively involves conditional independence (CI) tests. Hence, its output quality highly depends on the performance of CI tests, which can often be unreliable in practice. Moreover, privacy concerns arise when excessive CI tests are performed. Despite the distinct nature between unreliable and excessive CI tests, this paper identifies a unified and principled approach to addressing both of them. Generally, CI statements, the outputs of CI tests, adhere to Pearl's axioms, which are a set of well-established integrity constraints on conditional independence. Hence, we can either detect erroneous CI statements if they violate Pearl's axioms or prune excessive CI statements if they are logically entailed by Pearl's axioms. Holistically, both problems boil down to reasoning about the consistency of CI statements under Pearl's axioms (referred to as CIR problem). We propose a runtime verification tool called CICheck, designed to harden causal discovery algorithms from reliability and privacy perspectives. CICheck employs a sound and decidable encoding scheme that translates CIR into SMT problems. To solve the CIR problem efficiently, CICheck introduces a four-stage decision procedure with three lightweight optimizations that actively prove or refute consistency, and only resort to costly SMT-based reasoning when necessary. Based on the decision procedure to CIR, CICheck includes two variants: ED-CICheck and ED-CICheck, which detect erroneous CI tests (to enhance reliability) and prune excessive CI tests (to enhance privacy), respectively. [abridged due to length limit

    The Fast and the Private: Task-based Dataset Search

    Full text link
    Modern dataset search platforms employ ML task-based utility metrics instead of relying on metadata-based keywords to comb through extensive dataset repositories. In this setup, requesters provide an initial dataset, and the platform identifies complementary datasets to augment (join or union) the requester's dataset such that the ML model (e.g., linear regression) performance is improved most. Although effective, current task-based data searches are stymied by (1) high latency which deters users, (2) privacy concerns for regulatory standards, and (3) low data quality which provides low utility. We introduce Mileena, a fast, private, and high-quality task-based dataset search platform. At its heart, Mileena is built on pre-computed semi-ring sketches for efficient ML training and evaluation. Based on semi-ring, we develop a novel Factorized Privacy Mechanism that makes the search differentially private and scales to arbitrary corpus sizes and numbers of requests without major quality degradation. We also demonstrate the early promise in using LLM-based agents for automatic data transformation and applying semi-rings to support causal discovery and treatment effect estimation

    A Comprehensive Survey on Trustworthy Graph Neural Networks: Privacy, Robustness, Fairness, and Explainability

    Full text link
    Graph Neural Networks (GNNs) have made rapid developments in the recent years. Due to their great ability in modeling graph-structured data, GNNs are vastly used in various applications, including high-stakes scenarios such as financial analysis, traffic predictions, and drug discovery. Despite their great potential in benefiting humans in the real world, recent study shows that GNNs can leak private information, are vulnerable to adversarial attacks, can inherit and magnify societal bias from training data and lack interpretability, which have risk of causing unintentional harm to the users and society. For example, existing works demonstrate that attackers can fool the GNNs to give the outcome they desire with unnoticeable perturbation on training graph. GNNs trained on social networks may embed the discrimination in their decision process, strengthening the undesirable societal bias. Consequently, trustworthy GNNs in various aspects are emerging to prevent the harm from GNN models and increase the users' trust in GNNs. In this paper, we give a comprehensive survey of GNNs in the computational aspects of privacy, robustness, fairness, and explainability. For each aspect, we give the taxonomy of the related methods and formulate the general frameworks for the multiple categories of trustworthy GNNs. We also discuss the future research directions of each aspect and connections between these aspects to help achieve trustworthiness

    Differentially Private Conditional Independence Testing

    Full text link
    Conditional independence (CI) tests are widely used in statistical data analysis, e.g., they are the building block of many algorithms for causal graph discovery. The goal of a CI test is to accept or reject the null hypothesis that X ⁣ ⁣ ⁣YZX \perp \!\!\! \perp Y \mid Z, where XR,YR,ZRdX \in \mathbb{R}, Y \in \mathbb{R}, Z \in \mathbb{R}^d. In this work, we investigate conditional independence testing under the constraint of differential privacy. We design two private CI testing procedures: one based on the generalized covariance measure of Shah and Peters (2020) and another based on the conditional randomization test of Cand\`es et al. (2016) (under the model-X assumption). We provide theoretical guarantees on the performance of our tests and validate them empirically. These are the first private CI tests with rigorous theoretical guarantees that work for the general case when ZZ is continuous

    PreFair: Privately Generating Justifiably Fair Synthetic Data

    Full text link
    When a database is protected by Differential Privacy (DP), its usability is limited in scope. In this scenario, generating a synthetic version of the data that mimics the properties of the private data allows users to perform any operation on the synthetic data, while maintaining the privacy of the original data. Therefore, multiple works have been devoted to devising systems for DP synthetic data generation. However, such systems may preserve or even magnify properties of the data that make it unfair, endering the synthetic data unfit for use. In this work, we present PreFair, a system that allows for DP fair synthetic data generation. PreFair extends the state-of-the-art DP data generation mechanisms by incorporating a causal fairness criterion that ensures fair synthetic data. We adapt the notion of justifiable fairness to fit the synthetic data generation scenario. We further study the problem of generating DP fair synthetic data, showing its intractability and designing algorithms that are optimal under certain assumptions. We also provide an extensive experimental evaluation, showing that PreFair generates synthetic data that is significantly fairer than the data generated by leading DP data generation mechanisms, while remaining faithful to the private data.Comment: 15 pages, 11 figure
    corecore