7,428 research outputs found

    A model for mobile content filtering on non-interactive recommendation systems

    Get PDF
    To overcome the problem of information overloading in mobile communication, a recommendation system can be used to help mobile device users. However, there are problems relating to sparsity of information from a first-time user in regard to initial rating of the content and the retrieval of relevant items. In order for the user to experience personalized content delivery via the mobile recommendation system, content filtering is necessary. This paper proposes an integrated method by using classification and association rule techniques for extracting knowledge from mobile content in a user's profile. The knowledge can be used to establish a model for new users and first rater on mobile content. The model recommends relevant content in the early stage during the connection based on the user's profile. The proposed method also facilitates association to be generated to link the first rater items to the top items identified from the outcomes of the classification and clustering processes. This can address the problem of sparsity in initial rating and new user's connection for non-interactive recommendation systems

    Seamlessly Unifying Attributes and Items: Conversational Recommendation for Cold-Start Users

    Full text link
    Static recommendation methods like collaborative filtering suffer from the inherent limitation of performing real-time personalization for cold-start users. Online recommendation, e.g., multi-armed bandit approach, addresses this limitation by interactively exploring user preference online and pursuing the exploration-exploitation (EE) trade-off. However, existing bandit-based methods model recommendation actions homogeneously. Specifically, they only consider the items as the arms, being incapable of handling the item attributes, which naturally provide interpretable information of user's current demands and can effectively filter out undesired items. In this work, we consider the conversational recommendation for cold-start users, where a system can both ask the attributes from and recommend items to a user interactively. This important scenario was studied in a recent work. However, it employs a hand-crafted function to decide when to ask attributes or make recommendations. Such separate modeling of attributes and items makes the effectiveness of the system highly rely on the choice of the hand-crafted function, thus introducing fragility to the system. To address this limitation, we seamlessly unify attributes and items in the same arm space and achieve their EE trade-offs automatically using the framework of Thompson Sampling. Our Conversational Thompson Sampling (ConTS) model holistically solves all questions in conversational recommendation by choosing the arm with the maximal reward to play. Extensive experiments on three benchmark datasets show that ConTS outperforms the state-of-the-art methods Conversational UCB (ConUCB) and Estimation-Action-Reflection model in both metrics of success rate and average number of conversation turns.Comment: TOIS 202

    USING FILTERS IN TIME-BASED MOVIE RECOMMENDER SYSTEMS

    Get PDF
    On a very high level, a movie recommendation system is one which uses data about the user, data about the movie and the ratings given by a user in order to generate predictions for the movies that the user will like. This prediction is further presented to the user as a recommendation. For example, Netflix uses a recommendation system to predict movies and generate favorable recommendations for users based on their profiles and the profiles of users similar to them. In user-based collaborative filtering algorithm, the movies rated highly by the similar users of a particular user are considered as recommendations to that user. But users’ preferences vary with time, which often affects the efficacy of the recommendation, especially in a movie recommendation system. Because of the constant variation of the preferences, there has been research on using time of rating or watching the movie as a significant factor for recommendation. If time is considered as an attribute in the training phase of building a recommendation model, the model might get complex. Most of the research till now does this in the training phase, however, we study the effect of using time as a factor in the post training phase and study it further by applying a genre-based filtering mechanism on the system. Employing this in the post training phase reduces the complexity of the method and also reduces the number of irrelevant recommendations
    • …
    corecore