1,355 research outputs found

    Securing NextG networks with physical-layer key generation: A survey

    Get PDF
    As the development of next-generation (NextG) communication networks continues, tremendous devices are accessing the network and the amount of information is exploding. However, with the increase of sensitive data that requires confidentiality to be transmitted and stored in the network, wireless network security risks are further amplified. Physical-layer key generation (PKG) has received extensive attention in security research due to its solid information-theoretic security proof, ease of implementation, and low cost. Nevertheless, the applications of PKG in the NextG networks are still in the preliminary exploration stage. Therefore, we survey existing research and discuss (1) the performance advantages of PKG compared to cryptography schemes, (2) the principles and processes of PKG, as well as research progresses in previous network environments, and (3) new application scenarios and development potential for PKG in NextG communication networks, particularly analyzing the effect and prospects of PKG in massive multiple-input multiple-output (MIMO), reconfigurable intelligent surfaces (RISs), artificial intelligence (AI) enabled networks, integrated space-air-ground network, and quantum communication. Moreover, we summarize open issues and provide new insights into the development trends of PKG in NextG networks

    Securing the Internet of Things: A Study on Machine Learning-Based Solutions for IoT Security and Privacy Challenges

    Get PDF
    The Internet of Things (IoT) is a rapidly growing technology that connects and integrates billions of smart devices, generating vast volumes of data and impacting various aspects of daily life and industrial systems. However, the inherent characteristics of IoT devices, including limited battery life, universal connectivity, resource-constrained design, and mobility, make them highly vulnerable to cybersecurity attacks, which are increasing at an alarming rate. As a result, IoT security and privacy have gained significant research attention, with a particular focus on developing anomaly detection systems. In recent years, machine learning (ML) has made remarkable progress, evolving from a lab novelty to a powerful tool in critical applications. ML has been proposed as a promising solution for addressing IoT security and privacy challenges. In this article, we conducted a study of the existing security and privacy challenges in the IoT environment. Subsequently, we present the latest ML-based models and solutions to address these challenges, summarizing them in a table that highlights the key parameters of each proposed model. Additionally, we thoroughly studied available datasets related to IoT technology. Through this article, readers will gain a detailed understanding of IoT architecture, security attacks, and countermeasures using ML techniques, utilizing available datasets. We also discuss future research directions for ML-based IoT security and privacy. Our aim is to provide valuable insights into the current state of research in this field and contribute to the advancement of IoT security and privacy

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Cooperative transport communication in AGV groups using Omni-Curve Parameters

    Get PDF
    El concepto de los parámetros Omni-Curva se utiliza en el contexto de los robots AGV. Permite que un grupo de vehículos pueda moverse como si fuera uno y, por ejemplo, transportar una carga juntos (transporte cooperativo). Su objetivo es ser universal, es decir, que sirva para cualquier AGV sin importar su configuración de chasis o número de ruedas. Para lograrlo, este concepto calcula la dirección y velocidad de cada rueda conociendo su posición relativa constante dentro del grupo y la trayectoria planeada. Para cada instante en la trayectoria, los parámetros Omni-Curva pueden tomar valores diferentes. Este trabajo se centra en discernir cuál es la mejor forma de asegurar que los AGV poseen los valores actualizados de estos parámetros. Primero se estudian y comparan diferentes tipos de tecnologías de comunicación. Las características más deseadas son robustez y baja latencia. Después, las más interesantes se utilizan para construir un sistema de comunicaciones capaz de enviar y recibir estos parámetros. También se desarrollan métodos para optimizar el flujo de información dentro del grupo de AGV. Finalmente, se comparan y prueban las tecnologías utilizadas y se exponen las conclusiones.The concept of Omni-Curve Parameters (OCPs) is used in the context of Automated Guided Vehicles (AGVs). It allows a group of vehicles to move as if they were one and, for example, carry a load together (cooperative transport). Its aim is to be universal, which means that any vehicle could use it regardless of their chassis configuration or number of wheels. To achieve this, the concept calculates the direction and speed of each wheel knowing their constant relative position in the group and the planned trajectory. For each instant of the trajectory, there can be different values for the OCPs, which are three: floating angle, nominal velocity and nominal curvature. This work focuses on discerning how best to ensure that the AGVs update the values of the OCPs. First, some communication technologies are studied and compared. Robustness and low latency are some of the most desired features. Then, the most appealing ones are used to build a communication system capable of sending and receiving this parameters, as well as some concepts are developed to optimize the information flow of the OCPs through the group. Finally, technologies are compared and tested and conclusions are drawn.Departamento de Ingeniería de Sistemas y AutomáticaMáster en Ingeniería Industria

    Ultra-Wideband Trained Artificial Neural Networks for Bluetooth Proximity Detection in Small Crowded Areas

    Get PDF
    Estimating the distance between indoor users is increasingly important in unexpected ways. One specific example is the need for electronic contact tracing demonstrated during the recent global pandemic. Smartphones are now routinely equipped with Bluetooth Low Energy radios, among other sensors, and these can be used for proximity detection based on received signal strength that is subject to errors due to poor modelling of the indoor propagation environment. Some high-end smartphones have now also been equipped with ultra-wideband ranging radios that provide a much more precise range measurement. This thesis demonstrates the concept of using a limited number of UWB-equipped smartphones to gather data to train Artificial Neural Networks (ANN) to improve short-range distance estimation among Bluetooth users. The trained RSSI to range model can be used for proximity determination by other Bluetooth users in small, crowded areas. Two ANN algorithms were trained using RSSI measurements from three BLE advertising channels and UWB range as ground truth and training data. The initial training and testing were conducted in a semi-empty office laboratory with 2130 observations. The RF model used 1917 samples (90% of data) for training and 213 samples (10%) for testing, while the CNN method used 1704 samples (80% of data) for training and 426 samples (20%) for evaluation. The trained neural network models were tested in two other office environments under different user conditions. The results indicate that the ANN models can estimate proximity in a new environment without further training with a mean error of less than 1.2 metres, within a range of up to 6 metres at line-of-sight (LOS). In highly constrained non-line-of-sight (NLOS) areas in the first office room, the proposed models provided proximity accuracy better than 2.9 metres. Furthermore, during testing across two adjacent office environments, each containing a single BLE device with complex furniture arrangements, the ANN models showed the proximity between the BLE devices with an error of less than 2-3 metres

    Energy autonomous wireless sensing node working at 5 Lux from a 4 cm2 solar cell

    Get PDF
    Harvesting energy for IoT nodes in places that are permanently poorly lit is important, as many such places exist in buildings and other locations. The need for energy-autonomous devices working in such environments has so far received little attention. This work reports the design and test results of an energy-autonomous sensor node powered solely by solar cells. The system can cold-start and run in low light conditions (in this case 20 lux and below, using white LEDs as light sources). Four solar cells of 1 cm2 each are used, yielding a total active surface of 4 cm2. The system includes a capacitive sensor that acts as a touch detector, a crystal-accurate real-time clock (RTC), and a Cortex-M3-compatible microcontroller integrating a Bluetooth Low Energy radio (BLE) and the necessary stack for communication. A capacitor of 100 μF is used as energy storage. A low-power comparator monitors the level of the energy storage and powers up the system. The combination of the RTC and touch sensor enables the MCU load to be powered up periodically or using an asynchronous user touch activity. First tests have shown that the system can perform the basic work of cold-starting, sensing, and transmitting frames at +0 dBm, at illuminances as low as 5 lux. Harvesting starts earlier, meaning that the potential for full function below 5 lux is present. The system has also been tested with other light sources. The comparator is a test chip developed for energy harvesting. Other elements are off-the-shelf components. The use of commercially available devices, the reduced number of parts, and the absence of complex storage elements enable a small node to be built in the future, for use in constantly or intermittently poorly lit places

    Battery-Less Industrial Wireless Monitoring and Control System for Improved Operational Efficiency

    Get PDF
    An industrial wireless monitoring and control system, capable of supporting energyharvesting devices through smart sensing and network management, designed for improving electrorefinery performance by applying predictive maintenance, is presented. The system is self-powered from bus bars, and features wireless communication and easy-to-access information and alarms. With cell voltage and electrolyte temperature measurements, the system enables real-time cell performance discovery and early reaction to critical production or quality disturbances such as short-circuiting, flow blockages, or electrolyte temperature excursions. Field validation shows an increase in operational performance of 30% (reaching 97%) in the detection of short circuits, which, thanks to a neural network deployed, are detected, on average, 10.5 h earlier compared to the traditional methodology. The developed system is a sustainable IoT solution, being easy to maintain after its deployment, and providing benefits of improved control and operation, increased current efficiency, and decreased maintenance costs.The authors would like to thank the Technological Corporation of Andalusia (CTA) and Atlantic Copper S.L.U. company for funding this research under projects 19/1008 and 22/1077

    Reinforcement Learning Empowered Unmanned Aerial Vehicle Assisted Internet of Things Networks

    Get PDF
    This thesis aims towards performance enhancement for unmanned aerial vehicles (UAVs) assisted internet of things network (IoT). In this realm, novel reinforcement learning (RL) frameworks have been proposed for solving intricate joint optimisation scenarios. These scenarios include, uplink, downlink and combined. The multi-access technique utilised is non-orthogonal multiple access (NOMA), as key enabler in this regime. The outcomes of this research entail, enhancement in key performance metrics, such as sum-rate, energy efficiency and consequent reduction in outage. For the scenarios involving uplink transmissions by IoT devices, adaptive and tandem rein forcement learning frameworks have been developed. The aim is to maximise capacity over fixed UAV trajectory. The adaptive framework is utilised in a scenario wherein channel suitability is ascertained for uplink transmissions utilising a fixed clustering regime in NOMA. Tandem framework is utilised in a scenario wherein multiple-channel resource suitability is ascertained along with, power allocation, dynamic clustering and IoT node associations to NOMA clusters and channels. In scenarios involving downlink transmission to IoT devices, an ensemble RL (ERL) frame work is proposed for sum-rate enhancement over fixed UAV trajectory. For dynamic UAV trajec tory, hybrid decision framework (HDF) is proposed for energy efficiency optimisation. Downlink transmission power and bandwidth is managed for NOMA transmissions over fixed and dynamic UAV trajectories, facilitating IoT networks. In UAV enabled relaying scenario, for control system plants and their respective remotely deployed sensors, a head start reinforcement learning framework based on deep learning is de veloped and implemented. NOMA is invoked, in both uplink and downlink transmissions for IoT network. Dynamic NOMA clustering, power management and nodes association along with UAV height control is jointly managed. The primary aim is the, enhancement of net sum-rate and its subsequent manifestation in facilitating the IoT assisted use case. The simulation results relating to aforesaid scenarios indicate, enhanced sum-rate, energy efficiency and reduced outage for UAV-assisted IoT networks. The proposed RL frameworks surpass in performance in comparison to existing frameworks as benchmarks for the same sce narios. The simulation platforms utilised are MATLAB and Python, for network modeling, RL framework design and validation

    Autonomous Sensing Nodes for IoT Applications

    Get PDF
    The present doctoral thesis fits into the energy harvesting framework, presenting the development of low-power nodes compliant with the energy autonomy requirement, and sharing common technologies and architectures, but based on different energy sources and sensing mechanisms. The adopted approach is aimed at evaluating multiple aspects of the system in its entirety (i.e., the energy harvesting mechanism, the choice of the harvester, the study of the sensing process, the selection of the electronic devices for processing, acquisition and measurement, the electronic design, the microcontroller unit (MCU) programming techniques), accounting for very challenging constraints as the low amounts of harvested power (i.e., [μW, mW] range), the careful management of the available energy, the coexistence of sensing and radio transmitting features with ultra-low power requirements. Commercial sensors are mainly used to meet the cost-effectiveness and the large-scale reproducibility requirements, however also customized sensors for a specific application (soil moisture measurement), together with appropriate characterization and reading circuits, are also presented. Two different strategies have been pursued which led to the development of two types of sensor nodes, which are referred to as 'sensor tags' and 'self-sufficient sensor nodes'. The first term refers to completely passive sensor nodes without an on-board battery as storage element and which operate only in the presence of the energy source, provisioning energy from it. In this thesis, an RFID (Radio Frequency Identification) sensor tag for soil moisture monitoring powered by the impinging electromagnetic field is presented. The second term identifies sensor nodes equipped with a battery rechargeable through energy scavenging and working as a secondary reserve in case of absence of the primary energy source. In this thesis, quasi-real-time multi-purpose monitoring LoRaWAN nodes harvesting energy from thermoelectricity, diffused solar light, indoor white light, and artificial colored light are presented
    • …
    corecore