6,741 research outputs found

    Symbolic Computing with Incremental Mindmaps to Manage and Mine Data Streams - Some Applications

    Full text link
    In our understanding, a mind-map is an adaptive engine that basically works incrementally on the fundament of existing transactional streams. Generally, mind-maps consist of symbolic cells that are connected with each other and that become either stronger or weaker depending on the transactional stream. Based on the underlying biologic principle, these symbolic cells and their connections as well may adaptively survive or die, forming different cell agglomerates of arbitrary size. In this work, we intend to prove mind-maps' eligibility following diverse application scenarios, for example being an underlying management system to represent normal and abnormal traffic behaviour in computer networks, supporting the detection of the user behaviour within search engines, or being a hidden communication layer for natural language interaction.Comment: 4 pages; 4 figure

    Data mining techniques for complex application domains

    Get PDF
    The emergence of advanced communication techniques has increased availability of large collection of data in electronic form in a number of application domains including healthcare, e- business, and e-learning. Everyday a large amount of records are stored electronically. However, finding useful information from such a large data collection is a challenging issue. Data mining technology aims automatically extracting hidden knowledge from large data repositories exploiting sophisticated algorithms. The hidden knowledge in the electronic data may be potentially utilized to facilitate the procedures, productivity, and reliability of several application domains. The PhD activity has been focused on novel and effective data mining approaches to tackle the complex data coming from two main application domains: Healthcare data analysis and Textual data analysis. The research activity, in the context of healthcare data, addressed the application of different data mining techniques to discover valuable knowledge from real exam-log data of patients. In particular, efforts have been devoted to the extraction of medical pathways, which can be exploited to analyze the actual treatments followed by patients. The derived knowledge not only provides useful information to deal with the treatment procedures but may also play an important role in future predictions of potential patient risks associated with medical treatments. The research effort in textual data analysis is twofold. On the one hand, a novel approach to discovery of succinct summaries of large document collections has been proposed. On the other hand, the suitability of an established descriptive data mining to support domain experts in making decisions has been investigated. Both research activities are focused on adopting widely exploratory data mining techniques to textual data analysis, which require overcoming intrinsic limitations for traditional algorithms for handling textual documents efficiently and effectively

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    The Minimum Description Length Principle for Pattern Mining: A Survey

    Full text link
    This is about the Minimum Description Length (MDL) principle applied to pattern mining. The length of this description is kept to the minimum. Mining patterns is a core task in data analysis and, beyond issues of efficient enumeration, the selection of patterns constitutes a major challenge. The MDL principle, a model selection method grounded in information theory, has been applied to pattern mining with the aim to obtain compact high-quality sets of patterns. After giving an outline of relevant concepts from information theory and coding, as well as of work on the theory behind the MDL and similar principles, we review MDL-based methods for mining various types of data and patterns. Finally, we open a discussion on some issues regarding these methods, and highlight currently active related data analysis problems

    Knowledge discovery techniques for transactional data model

    Get PDF
    In this work we give solutions to two key knowledge discovery problems for the Transactional Data model: Cluster analysis and Itemset mining. By knowledge discovery in context of these two problems, we specifically mean novel and useful ways of extracting clusters and itemsets from transactional data. Transactional Data model is widely used in a variety of applications. In cluster analysis the goal is to find clusters of similar transactions in the data with the collective properties of each cluster being unique. We propose the first clustering algorithm for transactional data which uses the latest model definition. All previously proposed algorithms did not use the important utility information in the data. Our novel technique effectively solves this problem. We also propose two new cluster validation metrics based on the criterion of high utility patterns. When comparing our technique with competing algorithms, we miss much fewer high utility patterns of importance than them. Itemset mining is the problem of searching for repeating patterns of high importance in the data. We show that the current model for itemset mining leads to information loss. It ignores the presence of clusters in the data. We propose a new itemset mining model which incorporates the cluster structure information. This allows the model to make predictions for future itemsets. We show that our model makes accurate predictions successfully, by discovering 30-40% future itemsets in most experiments on two benchmark datasets with negligible inaccuracies. There are no other present itemset prediction models, so accurate prediction is an accomplishment of ours. We provide further theoretical improvements in our model by making it capable of giving predictions for specific future windows by using time series forecasting. We also perform a detailed analysis of various clustering algorithms and study the effect of the Big Data phenomenon on them. This inspired us to further refine our model based on a classification problem design. This addition allows the mining of itemsets based on maximizing a customizable objective function made of different prediction metrics. The final framework design proposed by us is the first of its kind to make itemset predictions by using the cluster structure. It is capable of adapting the predictions to a specific future window and customizes the mining process to any specified prediction criterion. We create an implementation of the framework on a Web analytics data set, and notice that it successfully makes optimal prediction configuration choices with a high accuracy of 0.895

    Storage Solutions for Big Data Systems: A Qualitative Study and Comparison

    Full text link
    Big data systems development is full of challenges in view of the variety of application areas and domains that this technology promises to serve. Typically, fundamental design decisions involved in big data systems design include choosing appropriate storage and computing infrastructures. In this age of heterogeneous systems that integrate different technologies for optimized solution to a specific real world problem, big data system are not an exception to any such rule. As far as the storage aspect of any big data system is concerned, the primary facet in this regard is a storage infrastructure and NoSQL seems to be the right technology that fulfills its requirements. However, every big data application has variable data characteristics and thus, the corresponding data fits into a different data model. This paper presents feature and use case analysis and comparison of the four main data models namely document oriented, key value, graph and wide column. Moreover, a feature analysis of 80 NoSQL solutions has been provided, elaborating on the criteria and points that a developer must consider while making a possible choice. Typically, big data storage needs to communicate with the execution engine and other processing and visualization technologies to create a comprehensive solution. This brings forth second facet of big data storage, big data file formats, into picture. The second half of the research paper compares the advantages, shortcomings and possible use cases of available big data file formats for Hadoop, which is the foundation for most big data computing technologies. Decentralized storage and blockchain are seen as the next generation of big data storage and its challenges and future prospects have also been discussed
    • …
    corecore