10,541 research outputs found

    Symmetry Breaking for Answer Set Programming

    Full text link
    In the context of answer set programming, this work investigates symmetry detection and symmetry breaking to eliminate symmetric parts of the search space and, thereby, simplify the solution process. We contribute a reduction of symmetry detection to a graph automorphism problem which allows to extract symmetries of a logic program from the symmetries of the constructed coloured graph. We also propose an encoding of symmetry-breaking constraints in terms of permutation cycles and use only generators in this process which implicitly represent symmetries and always with exponential compression. These ideas are formulated as preprocessing and implemented in a completely automated flow that first detects symmetries from a given answer set program, adds symmetry-breaking constraints, and can be applied to any existing answer set solver. We demonstrate computational impact on benchmarks versus direct application of the solver. Furthermore, we explore symmetry breaking for answer set programming in two domains: first, constraint answer set programming as a novel approach to represent and solve constraint satisfaction problems, and second, distributed nonmonotonic multi-context systems. In particular, we formulate a translation-based approach to constraint answer set solving which allows for the application of our symmetry detection and symmetry breaking methods. To compare their performance with a-priori symmetry breaking techniques, we also contribute a decomposition of the global value precedence constraint that enforces domain consistency on the original constraint via the unit-propagation of an answer set solver. We evaluate both options in an empirical analysis. In the context of distributed nonmonotonic multi-context system, we develop an algorithm for distributed symmetry detection and also carry over symmetry-breaking constraints for distributed answer set programming.Comment: Diploma thesis. Vienna University of Technology, August 201

    An adaptive prefix-assignment technique for symmetry reduction

    Full text link
    This paper presents a technique for symmetry reduction that adaptively assigns a prefix of variables in a system of constraints so that the generated prefix-assignments are pairwise nonisomorphic under the action of the symmetry group of the system. The technique is based on McKay's canonical extension framework [J.~Algorithms 26 (1998), no.~2, 306--324]. Among key features of the technique are (i) adaptability---the prefix sequence can be user-prescribed and truncated for compatibility with the group of symmetries; (ii) parallelizability---prefix-assignments can be processed in parallel independently of each other; (iii) versatility---the method is applicable whenever the group of symmetries can be concisely represented as the automorphism group of a vertex-colored graph; and (iv) implementability---the method can be implemented relying on a canonical labeling map for vertex-colored graphs as the only nontrivial subroutine. To demonstrate the practical applicability of our technique, we have prepared an experimental open-source implementation of the technique and carry out a set of experiments that demonstrate ability to reduce symmetry on hard instances. Furthermore, we demonstrate that the implementation effectively parallelizes to compute clusters with multiple nodes via a message-passing interface.Comment: Updated manuscript submitted for revie

    Topological Defects and nano-Hz Gravitational Waves in Aligned Axion Models

    Full text link
    We study the formation and evolution of topological defects in an aligned axion model with multiple Peccei-Quinn scalars, where the QCD axion is realized by a certain combination of the axions with decay constants much smaller than the conventional Peccei-Quinn breaking scale. When the underlying U(1) symmetries are spontaneously broken, the aligned structure in the axion field space exhibits itself as a complicated string-wall network in the real space. We find that the string-wall network likely survives until the QCD phase transition if the number of the Peccei-Quinn scalars is greater than two. The string-wall system collapses during the QCD phase transition, producing a significant amount of gravitational waves in the nano-Hz range at present. The typical decay constant is constrained to be below O(100) TeV by the pulsar timing observations, and the constraint will be improved by a factor of 2 in the future SKA observations.Comment: 23 pages, 7 figure

    Coset Space Dimensional Reduction and Wilson Flux Breaking of Ten-Dimensional N=1, E(8) Gauge Theory

    Full text link
    We consider a N=1 supersymmetric E(8) gauge theory, defined in ten dimensions and we determine all four-dimensional gauge theories resulting from the generalized dimensional reduction a la Forgacs-Manton over coset spaces, followed by a subsequent application of the Wilson flux spontaneous symmetry breaking mechanism. Our investigation is constrained only by the requirements that (i) the dimensional reduction leads to the potentially phenomenologically interesting, anomaly free, four-dimensional E(6), SO(10) and SU(5) GUTs and (ii) the Wilson flux mechanism makes use only of the freely acting discrete symmetries of all possible six-dimensional coset spaces.Comment: 45 pages, 2 figures, 10 tables, uses xy.sty, longtable.sty, ltxtable.sty, (a shorter version will be published in Eur. Phys. J. C
    corecore