20,943 research outputs found

    Virtual Communication Stack: Towards Building Integrated Simulator of Mobile Ad Hoc Network-based Infrastructure for Disaster Response Scenarios

    Full text link
    Responses to disastrous events are a challenging problem, because of possible damages on communication infrastructures. For instance, after a natural disaster, infrastructures might be entirely destroyed. Different network paradigms were proposed in the literature in order to deploy adhoc network, and allow dealing with the lack of communications. However, all these solutions focus only on the performance of the network itself, without taking into account the specificities and heterogeneity of the components which use it. This comes from the difficulty to integrate models with different levels of abstraction. Consequently, verification and validation of adhoc protocols cannot guarantee that the different systems will work as expected in operational conditions. However, the DEVS theory provides some mechanisms to allow integration of models with different natures. This paper proposes an integrated simulation architecture based on DEVS which improves the accuracy of ad hoc infrastructure simulators in the case of disaster response scenarios.Comment: Preprint. Unpublishe

    The Degeneracy of Galaxy Formation Models

    Full text link
    We develop a new formalism for modeling the formation and evolution of galaxies within a hierarchical universe. Similarly to standard semi-analytical models we trace galaxies inside dark-matter merger-trees. The formalism includes treatment of feedback, star-formation, cooling, smooth accretion, gas stripping in satellite galaxies, and merger-induced star bursts. However, unlike in other models, each process is assumed to have an efficiency which depends only on the host halo mass and redshift. This allows us to describe the various components of the model in a simple and transparent way. By allowing the efficiencies to have any value for a given halo mass and redshift, we can easily encompass a large range of scenarios. To demonstrate this point, we examine several different galaxy formation models, which are all consistent with the observational data. Each model is characterized by a different unique feature: cold accretion in low mass haloes, zero feedback, stars formed only in merger-induced bursts, and shutdown of star-formation after mergers. Using these models we are able to examine the degeneracy inherent in galaxy formation models, and look for observational data that will help to break this degeneracy. We show that the full distribution of star-formation rates in a given stellar mass bin is promising in constraining the models. We compare our approach in detail to the semi-analytical model of De Lucia & Blaizot. It is shown that our formalism is able to produce a very similar population of galaxies once the same median efficiencies per halo mass and redshift are being used. We provide a public version of the model galaxies on our web-page, along with a tool for running models with user-defined parameters. Our model is able to provide results for a 62.5 h^{-1} Mpc box within just a few seconds.Comment: Accepted for publication in MNRAS. Fig 6 & 7 corrected. For the project page which allows running your own model, see http://www.mpa-garching.mpg.de/galform/sesam

    Unified Multifractal Description of Velocity Increments Statistics in Turbulence: Intermittency and Skewness

    Full text link
    The phenomenology of velocity statistics in turbulent flows, up to now, relates to different models dealing with either signed or unsigned longitudinal velocity increments, with either inertial or dissipative fluctuations. In this paper, we are concerned with the complete probability density function (PDF) of signed longitudinal increments at all scales. First, we focus on the symmetric part of the PDFs, taking into account the observed departure from scale invariance induced by dissipation effects. The analysis is then extended to the asymmetric part of the PDFs, with the specific goal to predict the skewness of the velocity derivatives. It opens the route to the complete description of all measurable quantities, for any Reynolds number, and various experimental conditions. This description is based on a single universal parameter function D(h) and a universal constant R*.Comment: 13 pages, 3 figures, Extended version, Publishe

    Star Formation in a Turbulent Framework: From Giant Molecular Clouds to Protostars

    Get PDF
    Turbulence is thought to be a primary driving force behind the early stages of star formation. In this framework large, self gravitating, turbulent clouds fragment into smaller clouds which in turn fragment into even smaller ones. At the end of this cascade we find the clouds which collapse into protostars. Following this process is extremely challenging numerically due to the large dynamical range so in this paper we propose a semi analytic framework which is able to follow star formation from the largest, giant molecular cloud (GMC) scale, to the final protostellar size scale. Due to the simplicity of the framework it is ideal for theoretical experimentation to explore the principal processes behind different aspects of star formation, at the cost of strong assumptions. The basic version of the model discussed in this paper only contains turbulence, gravity and crude assumptions about feedback, nevertheless it can reproduce the observed core mass function (CMF) and provide the protostellar system mass function (PSMF), which shows a striking resemblance to the observed IMF. Furthermore we find that to produce a universal IMF protostellar feedback must be taken into account otherwise the PSMF peak shows a strong dependence on the background temperature.Comment: 13 pages, 13 figure

    Populating a cluster of galaxies - I. Results at z=0

    Get PDF
    We simulate the assembly of a massive rich cluster and the formation of its constituent galaxies in a flat, low-density universe. Our most accurate model follows the collapse, the star-formation history and the orbital motion of all galaxies more luminous than the Fornax dwarf spheroidal, while dark halo structure is tracked consistently throughout the cluster for all galaxies more luminous than the SMC. Within its virial radius this model contains about 2.0e7 dark matter particles and almost 5000 distinct dynamically resolved galaxies. Simulations of this same cluster at a variety of resolutions allow us to check explicitly for numerical convergence both of the dark matter structures produced by our new parallel N-body and substructure identification codes, and of the galaxy populations produced by the phenomenological models we use to follow cooling, star formation, feedback and stellar aging. This baryonic modelling is tuned so that our simulations reproduce the observed properties of isolated spirals outside clusters. Without further parameter adjustment our simulations then produce a luminosity function, a mass-to-light ratio, luminosity, number and velocity dispersion profiles, and a morphology-radius relation which are similar to those observed in real clusters. In particular, since our simulations follow galaxy merging explicitly, we can demonstrate that it accounts quantitatively for the observed cluster population of bulges and elliptical galaxies.Comment: 28 pages, submitted to MNRA

    Are You Still There? - A Lightweight Algorithm to Monitor Node Presence in Self-Configuring Networks

    Get PDF
    This paper is concerned with the analysis and redesign of a distributed algorithm to monitor the availability of nodes in self-configuring networks. The simple scheme to regularly probe a node Âż "are you still there?" Âż may easily lead to over- or underloading. The essence of the algorithm is therefore to automatically adapt the probing frequency. We show that a self-adaptive scheme to control the probe load, originally proposed as an extension to the UPnPTM (Universal Plug and Play) standard, leads to an unfair treatment of nodes: some nodes probe fast while others almost starve. An alternative distributed algorithm is proposed that overcomes this problem and that tolerates highly dynamic network topology changes. The algorithm is very simple and can be implemented on large networks of small computing devices such as mobile phones, PDAs, and so on
    • 

    corecore