28,629 research outputs found

    Domain Adaptation for Semantic Segmentation via Class-Balanced Self-Training

    Full text link
    Recent deep networks achieved state of the art performance on a variety of semantic segmentation tasks. Despite such progress, these models often face challenges in real world `wild tasks' where large difference between labeled training/source data and unseen test/target data exists. In particular, such difference is often referred to as `domain gap', and could cause significantly decreased performance which cannot be easily remedied by further increasing the representation power. Unsupervised domain adaptation (UDA) seeks to overcome such problem without target domain labels. In this paper, we propose a novel UDA framework based on an iterative self-training procedure, where the problem is formulated as latent variable loss minimization, and can be solved by alternatively generating pseudo labels on target data and re-training the model with these labels. On top of self-training, we also propose a novel class-balanced self-training framework to avoid the gradual dominance of large classes on pseudo-label generation, and introduce spatial priors to refine generated labels. Comprehensive experiments show that the proposed methods achieve state of the art semantic segmentation performance under multiple major UDA settings.Comment: Accepted to ECCV 201

    Feature Selection: A Data Perspective

    Full text link
    Feature selection, as a data preprocessing strategy, has been proven to be effective and efficient in preparing data (especially high-dimensional data) for various data mining and machine learning problems. The objectives of feature selection include: building simpler and more comprehensible models, improving data mining performance, and preparing clean, understandable data. The recent proliferation of big data has presented some substantial challenges and opportunities to feature selection. In this survey, we provide a comprehensive and structured overview of recent advances in feature selection research. Motivated by current challenges and opportunities in the era of big data, we revisit feature selection research from a data perspective and review representative feature selection algorithms for conventional data, structured data, heterogeneous data and streaming data. Methodologically, to emphasize the differences and similarities of most existing feature selection algorithms for conventional data, we categorize them into four main groups: similarity based, information theoretical based, sparse learning based and statistical based methods. To facilitate and promote the research in this community, we also present an open-source feature selection repository that consists of most of the popular feature selection algorithms (\url{http://featureselection.asu.edu/}). Also, we use it as an example to show how to evaluate feature selection algorithms. At the end of the survey, we present a discussion about some open problems and challenges that require more attention in future research

    Multiple Object Tracking: A Literature Review

    Full text link
    Multiple Object Tracking (MOT) is an important computer vision problem which has gained increasing attention due to its academic and commercial potential. Although different kinds of approaches have been proposed to tackle this problem, it still remains challenging due to factors like abrupt appearance changes and severe object occlusions. In this work, we contribute the first comprehensive and most recent review on this problem. We inspect the recent advances in various aspects and propose some interesting directions for future research. To the best of our knowledge, there has not been any extensive review on this topic in the community. We endeavor to provide a thorough review on the development of this problem in recent decades. The main contributions of this review are fourfold: 1) Key aspects in a multiple object tracking system, including formulation, categorization, key principles, evaluation of an MOT are discussed. 2) Instead of enumerating individual works, we discuss existing approaches according to various aspects, in each of which methods are divided into different groups and each group is discussed in detail for the principles, advances and drawbacks. 3) We examine experiments of existing publications and summarize results on popular datasets to provide quantitative comparisons. We also point to some interesting discoveries by analyzing these results. 4) We provide a discussion about issues of MOT research, as well as some interesting directions which could possibly become potential research effort in the future

    Controllable Invariance through Adversarial Feature Learning

    Full text link
    Learning meaningful representations that maintain the content necessary for a particular task while filtering away detrimental variations is a problem of great interest in machine learning. In this paper, we tackle the problem of learning representations invariant to a specific factor or trait of data. The representation learning process is formulated as an adversarial minimax game. We analyze the optimal equilibrium of such a game and find that it amounts to maximizing the uncertainty of inferring the detrimental factor given the representation while maximizing the certainty of making task-specific predictions. On three benchmark tasks, namely fair and bias-free classification, language-independent generation, and lighting-independent image classification, we show that the proposed framework induces an invariant representation, and leads to better generalization evidenced by the improved performance.Comment: NIPS 201

    Transfer Adaptation Learning: A Decade Survey

    Full text link
    The world we see is ever-changing and it always changes with people, things, and the environment. Domain is referred to as the state of the world at a certain moment. A research problem is characterized as transfer adaptation learning (TAL) when it needs knowledge correspondence between different moments/domains. Conventional machine learning aims to find a model with the minimum expected risk on test data by minimizing the regularized empirical risk on the training data, which, however, supposes that the training and test data share similar joint probability distribution. TAL aims to build models that can perform tasks of target domain by learning knowledge from a semantic related but distribution different source domain. It is an energetic research filed of increasing influence and importance, which is presenting a blowout publication trend. This paper surveys the advances of TAL methodologies in the past decade, and the technical challenges and essential problems of TAL have been observed and discussed with deep insights and new perspectives. Broader solutions of transfer adaptation learning being created by researchers are identified, i.e., instance re-weighting adaptation, feature adaptation, classifier adaptation, deep network adaptation and adversarial adaptation, which are beyond the early semi-supervised and unsupervised split. The survey helps researchers rapidly but comprehensively understand and identify the research foundation, research status, theoretical limitations, future challenges and under-studied issues (universality, interpretability, and credibility) to be broken in the field toward universal representation and safe applications in open-world scenarios.Comment: 26 pages, 4 figure

    Transfer Metric Learning: Algorithms, Applications and Outlooks

    Full text link
    Distance metric learning (DML) aims to find an appropriate way to reveal the underlying data relationship. It is critical in many machine learning, pattern recognition and data mining algorithms, and usually require large amount of label information (such as class labels or pair/triplet constraints) to achieve satisfactory performance. However, the label information may be insufficient in real-world applications due to the high-labeling cost, and DML may fail in this case. Transfer metric learning (TML) is able to mitigate this issue for DML in the domain of interest (target domain) by leveraging knowledge/information from other related domains (source domains). Although achieved a certain level of development, TML has limited success in various aspects such as selective transfer, theoretical understanding, handling complex data, big data and extreme cases. In this survey, we present a systematic review of the TML literature. In particular, we group TML into different categories according to different settings and metric transfer strategies, such as direct metric approximation, subspace approximation, distance approximation, and distribution approximation. A summarization and insightful discussion of the various TML approaches and their applications will be presented. Finally, we indicate some challenges and provide possible future directions.Comment: 14 pages, 5 figure

    Multiple kernel multivariate performance learning using cutting plane algorithm

    Full text link
    In this paper, we propose a multi-kernel classifier learning algorithm to optimize a given nonlinear and nonsmoonth multivariate classifier performance measure. Moreover, to solve the problem of kernel function selection and kernel parameter tuning, we proposed to construct an optimal kernel by weighted linear combination of some candidate kernels. The learning of the classifier parameter and the kernel weight are unified in a single objective function considering to minimize the upper boundary of the given multivariate performance measure. The objective function is optimized with regard to classifier parameter and kernel weight alternately in an iterative algorithm by using cutting plane algorithm. The developed algorithm is evaluated on two different pattern classification methods with regard to various multivariate performance measure optimization problems. The experiment results show the proposed algorithm outperforms the competing methods

    Discriminative Supervised Hashing for Cross-Modal similarity Search

    Full text link
    With the advantage of low storage cost and high retrieval efficiency, hashing techniques have recently been an emerging topic in cross-modal similarity search. As multiple modal data reflect similar semantic content, many researches aim at learning unified binary codes. However, discriminative hashing features learned by these methods are not adequate. This results in lower accuracy and robustness. We propose a novel hashing learning framework which jointly performs classifier learning, subspace learning and matrix factorization to preserve class-specific semantic content, termed Discriminative Supervised Hashing (DSH), to learn the discrimative unified binary codes for multi-modal data. Besides, reducing the loss of information and preserving the non-linear structure of data, DSH non-linearly projects different modalities into the common space in which the similarity among heterogeneous data points can be measured. Extensive experiments conducted on the three publicly available datasets demonstrate that the framework proposed in this paper outperforms several state-of -the-art methods.Comment: 7 pages,3 figures,4 tables;The paper is under consideration at Image and Vision Computin

    JTAV: Jointly Learning Social Media Content Representation by Fusing Textual, Acoustic, and Visual Features

    Full text link
    Learning social media content is the basis of many real-world applications, including information retrieval and recommendation systems, among others. In contrast with previous works that focus mainly on single modal or bi-modal learning, we propose to learn social media content by fusing jointly textual, acoustic, and visual information (JTAV). Effective strategies are proposed to extract fine-grained features of each modality, that is, attBiGRU and DCRNN. We also introduce cross-modal fusion and attentive pooling techniques to integrate multi-modal information comprehensively. Extensive experimental evaluation conducted on real-world datasets demonstrates our proposed model outperforms the state-of-the-art approaches by a large margin

    A Survey of Deep Facial Attribute Analysis

    Full text link
    Facial attribute analysis has received considerable attention when deep learning techniques made remarkable breakthroughs in this field over the past few years. Deep learning based facial attribute analysis consists of two basic sub-issues: facial attribute estimation (FAE), which recognizes whether facial attributes are present in given images, and facial attribute manipulation (FAM), which synthesizes or removes desired facial attributes. In this paper, we provide a comprehensive survey of deep facial attribute analysis from the perspectives of both estimation and manipulation. First, we summarize a general pipeline that deep facial attribute analysis follows, which comprises two stages: data preprocessing and model construction. Additionally, we introduce the underlying theories of this two-stage pipeline for both FAE and FAM. Second, the datasets and performance metrics commonly used in facial attribute analysis are presented. Third, we create a taxonomy of state-of-the-art methods and review deep FAE and FAM algorithms in detail. Furthermore, several additional facial attribute related issues are introduced, as well as relevant real-world applications. Finally, we discuss possible challenges and promising future research directions.Comment: submitted to International Journal of Computer Vision (IJCV
    corecore