8,841 research outputs found

    Towards a unified agent-based approach for real time computer forensic evidence collection

    Get PDF
    In this paper we present preliminary results for a real time computer forensics agent that logs computer activity on a Windows computer system for subsequent forensic investigation. The agent, which is developed using the .NET 2010 framework includes six modules. Each module is dedicated to keep track and record a specific category of user activities. For instance, the Windows Event Watcher logs the Windows OS events and the Removable Devices Detector logs any external devices that are plugged in or removed from a system. Currently, the aforementioned two modules are implemented and tested with carefully designed scenarios using Windows XP and Windows 7 operating systems. Copyright 2013 ACM

    A forensic acquisition and analysis system for IaaS

    Get PDF
    Cloud computing is a promising next-generation computing paradigm that offers significant economic benefits to both commercial and public entities. Furthermore, cloud computing provides accessibility, simplicity, and portability for its customers. Due to the unique combination of characteristics that cloud computing introduces (including on-demand self-service, broad network access, resource pooling, rapid elasticity, and measured service), digital investigations face various technical, legal, and organizational challenges to keep up with current developments in the field of cloud computing. There are a wide variety of issues that need to be resolved in order to perform a proper digital investigation in the cloud environment. This paper examines the challenges in cloud forensics that are identified in the current research literature, alongside exploring the existing proposals and technical solutions addressed in the respective research. The open problems that need further effort are highlighted. As a result of the analysis of literature, it is found that it would be difficult, if not impossible, to perform an investigation and discovery in the cloud environment without relying on cloud service providers (CSPs). Therefore, dependence on the CSPs is ranked as the greatest challenge when investigators need to acquire evidence in a timely yet forensically sound manner from cloud systems. Thus, a fully independent model requires no intervention or cooperation from the cloud provider is proposed. This model provides a different approach to a forensic acquisition and analysis system (FAAS) in an Infrastructure as a Service model. FAAS seeks to provide a richer and more complete set of admissible evidences than what current CSPs provide, with no requirement for CSP involvement or modification to the CSP’s underlying architecture

    Simple, Fast, and Accurate Cybercrime Detection on E-Government with Elastic Stack SIEM

    Get PDF
    Increased public activity in cyberspace (Internet) during the Covid-19 pandemic has also increased cybercrime cases with various attack targets, including E-Government services. Cybercrime is hidden and occurs unnoticed in E-Government, so handling it is challenging for all government agencies. The characteristics of E-Government are unique and different from other service systems in general, requiring extra anticipation for the prevention and handling of cybercrime attack threats. This research proposes log and event data analysis to detect cybercrime in e-Government using System Information and Event Management (SIEM). The main contribution of this research is a simple, fast, and accurate cybercrime detection process in the e-Government environment by increasing the level of log and event data analysis with the SIEM approach. SIEM technology based on machine learning and big data is implemented with Elastic Stack. The implemented technique can be used as a mitigation program against cybercrime threats that often attack and target e-Government. With simple, accurate, and fast cybercrime detection, it is expected to improve e-Government security and increase public confidence in public services organized by government agencies

    Towards a unified fraud management and digital forensic framework for mobile applications

    Get PDF
    Historically, progress in technology development has continually created new opportunities for criminal activities which, in turn, have triggered the need for the development of new security-sensitive systems. Organisations are now adopting mobile technologies for numerous applications to capitalise on the mobile revolution. They are now able to increase their operational efficiency as well as responsiveness and competitiveness and, most importantly, can now meet new, growing customers’ demands. However, although mobile technologies and applications present many new opportunities, they also present challenges. Threats to mobile phone applications are always on the rise and, therefore, compel organisations to invest money and time, among other technical controls, in an attempt to protect them from incurring losses. The computerisation of core activities (such as mobile banking in the banking industry, for example) has effectively exposed organisations to a host of complex fraud challenges that they have to deal with in addition to their core business of providing services to their end consumers. Fraudsters are able to use mobile devices to remotely access enterprise applications and subsequently perform fraudulent transactions. When this occurs, it is important to effectively investigate and manage the cause and findings, as well as to prevent any future similar attacks. Unfortunately, clients and consumers of these organisations are often ignorant of the risks to their assets and the consequences of the compromises that might occur. Organisations are therefore obliged, at least, to put in place measures that will not only minimise fraud but also be capable of detecting and preventing further similar incidents. The goal of this research was to develop a unified fraud management and digital forensic framework to improve the security of Information Technology (IT) processes and operations in organisations that make available mobile phone applications to their clients for business purposes. The research was motivated not only by the increasing reliance of organisations on mobile applications to service their customers but also by the fact that digital forensics and fraud management are often considered to be separate entities at an organisational level. This study proposes a unified approach to fraud management and digital forensic analysis to simultaneously manage and investigate fraud that occurs through the use of mobile phone applications. The unified Fraud Management and Digital Forensic (FMDF) framework is designed to (a) determine the suspicious degree of fraudulent transactions and (b) at the same time, to feed into a process that facilitates the investigation of incidents. A survey was conducted with subject matter experts in the banking environment. Data was generated through a participatory self-administered online questionnaire. Collected data was then presented, analysed and interpreted quantitatively and qualitatively. The study found that there was a general understanding of the common fraud management methodologies and approaches throughout the banking industry and the use thereof. However, while many of the respondents indicated that fraud detection was an integral part of their processes, they take a rather reactive approach when it comes to fraud management and digital forensics. Part of the reason for the reactive approach is that many investigations are conducted in silos, with no central knowledge repository where previous cases can be retrieved for comparative purposes. Therefore, confidentiality, integrity and availability of data are critical for continued business operations. To mitigate the pending risks, the study proposed a new way of thinking that combines both components of fraud management and digital forensics for an optimised approach to managing security in mobile applications. The research concluded that the unified FMDF approach was considered to be helpful and valuable to professionals who participated in the survey. Although the case study focused on the banking industry, the study appears to be instrumental in informing other types of organisations that make available the use of mobile applications for their clients in fraud risk awareness and risk management in general.ComputingM. Sc. (Computing

    A formalized model of the Trace

    Get PDF
    This work proposes a formalized model, grounded in forensic science, to support a unified understanding of the Trace across scientific disciplines. The model is precisely defined in mathematical terms that reflect the dynamics of an offense as expressed in Locard’s Exchange principle. Specifically, this mathematical ap-proach represents the Trace as the modification of a Scene, subsequently perceptible, resulting from the Event under investigation. Examples are provided to illustrate how this conceptualization applies to for-ensic science, including DNA and digital evidence. Broader implications of this model are presented in the context of COVID-19, emphasizing the value of cohesive scientific study of the Trace. The aim of this work is to stimulate more formalized study of the Trace, both from tangible and abstract perspectives, and to strengthen forensic science as a whole

    Application of multiple-wireless to a visual localisation system for emergency services

    Get PDF
    Abstract—In this paper we discuss the application of multiplewireless technology to a practical context-enhanced service system called ViewNet. ViewNet develops technologies to support enhanced coordination and cooperation between operation teams in the emergency services and the police. Distributed localisation of users and mapping of environments implemented over a secure wireless network enables teams of operatives to search and map an incident area rapidly and in full coordination with each other and with a control centre. Sensing is based on fusing absolute positioning systems (UWB and GPS) with relative localisation and mapping from on-body or handheld vision and inertial sensors. This paper focuses on the case for multiple-wireless capabilities in such a system and the benefits it can provide. We describe our work of developing a software API to support both WLAN and TETRA in ViewNet. It also provides a basis for incorporating future wireless technologies into ViewNet. I
    corecore