1,481 research outputs found

    Towards a secure network architecture for smart grids in 5G era

    Get PDF
    Smart grid introduces a wealth of promising applications for upcoming fifth-generation mobile networks (5G), enabling households and utility companies to establish a two-way digital communications dialogue, which can benefit both of them. The utility can monitor real-time consumption of end users and take proper measures (e.g., real-time pricing) to shape their consumption profile or to plan enough supply to meet the foreseen demand. On the other hand, a smart home can receive real-time electricity prices and adjust its consumption to minimize its daily electricity expenditure, while meeting the energy need and the satisfaction level of the dwellers. Smart Home applications for smart phones are also a promising use case, where users can remotely control their appliances, while they are away at work or on their ways home. Although these emerging services can evidently boost the efficiency of the market and the satisfaction of the consumers, they may also introduce new attack surfaces making the grid vulnerable to financial losses or even physical damages. In this paper, we propose an architecture to secure smart grid communications incorporating an intrusion detection system, composed of distributed components collaborating with each other to detect price integrity or load alteration attacks in different segments of an advanced metering infrastructure

    A review of cognitive smart grid communication infrastructure system

    Get PDF
    Abstract: The reliance on obsolete communication infrastructure and outdated technologies, in order to meet increasing electricity demand, consists of major challenges confronting traditional power grids. Therefore, the concept of smart grids (SGs) has been adopted as an ideal solution. This concept entails the integration of advanced information and communication technologies (ICTs) into power grids, as well as allowing a two-way flow of communication. However, recent development in cognitive technologies internet of things (IoT) smart devices particularly in home area network (HAN) as well rapid growth in wireless applications have enabled the traffic of huge data volumes across SGs. Data gathered in SGs are distinguished by quality of service (QoS) requirements such as; latency, security, bandwidth, etc. In order to support the level of QoS requirements in SGs, stable and secure communication infrastructure is of great importance. Therefore an in-depth review of the stateof- the-art of existing and emerging communication architectures of SGs is conducted. Therefore, this work proposes communication architecture based on fifth-generation (5G) and cognitive radio networks (CRN)

    A survey on information and communications technology infrastructure for smart grids

    Get PDF
    Abstract: _Smart Grids (SGs) aim to improve the aging power system grid into a modernized grid with the utilization of the advanced communication technologies in the industry. The incorporation of communications technology in power systems enables two-way flow of electricity and information within the grid system. SGs emerge as the next generation technology in power systems, as a result of the increasing demand of upgrading the conventional grid into the more modernized grid, with the aim of resolving some of the major crisis such as the environmental and energy crisis posed by the existing grid. In order, to deploy this intelligent grid, a sustainable, energy efficient, flexible, scalable, and secure communication infrastructure need to be designed and implemented to address these issues. There are several surveys and studies on the Information and communication technologies (ICT) architectures to develop a suitable protocol of applying the proposed advanced and up-to-date communication and networking technologies into the power system, to enable the intelligence features of the grid system. This paper reviews the works on communications technologies on SGs, with the objective of addressing the issues related to ICT infrastructure, and the recent communication technologies with their corresponding communication requirements

    A Survey on the Security and the Evolution of Osmotic and Catalytic Computing for 5G Networks

    Full text link
    The 5G networks have the capability to provide high compatibility for the new applications, industries, and business models. These networks can tremendously improve the quality of life by enabling various use cases that require high data-rate, low latency, and continuous connectivity for applications pertaining to eHealth, automatic vehicles, smart cities, smart grid, and the Internet of Things (IoT). However, these applications need secure servicing as well as resource policing for effective network formations. There have been a lot of studies, which emphasized the security aspects of 5G networks while focusing only on the adaptability features of these networks. However, there is a gap in the literature which particularly needs to follow recent computing paradigms as alternative mechanisms for the enhancement of security. To cover this, a detailed description of the security for the 5G networks is presented in this article along with the discussions on the evolution of osmotic and catalytic computing-based security modules. The taxonomy on the basis of security requirements is presented, which also includes the comparison of the existing state-of-the-art solutions. This article also provides a security model, "CATMOSIS", which idealizes the incorporation of security features on the basis of catalytic and osmotic computing in the 5G networks. Finally, various security challenges and open issues are discussed to emphasize the works to follow in this direction of research.Comment: 34 pages, 7 tables, 7 figures, Published In 5G Enabled Secure Wireless Networks, pp. 69-102. Springer, Cham, 201

    Uso de X-Road para implementar datos abiertos en sistemas eléctricos y promover la integración con estrategias de ciudad inteligente y gobierno abierto

    Get PDF
    The electrical industry is undergoing a deep digital transformation towards the consolidation of smart grids, which requires a high demand of data and information systems involved in the processes. Open data initiatives, which have been focused on open governance to a great extent, generate positive impacts on society and the economy in terms of easy access to public resources, agility, and transparency. These initiatives can also be adopted in the electrical industry (i.e., power, electrical, and energy systems) for customer engagement, collaboration with other industries, and reaching consensus. This study proposes the implementation of an open data solution for the electrical industry through the deployment of a data hub that offers digital services for smart city applications and the integration of the X-Road system to improve the security and interoperability of open data. This initiative aims to promote a wider adoption of open data in the electrical industry and prepare the latter for fully connected and collaborative digital ecosystems in smart cities, industries, and governments. This study also proposes an open data architecture for the interoperability of the electrical industry with other digital industries (through a Smart City Hub and the adoption of 5G technology), and it reports some relevant results and major findings in this regard. This paper highlights the benefits of promoting open data and technological strategies for digitized electrical systems while considering humans an essential factor. Finally, it discusses the pros and cons of the integration of X-Road with the electrical industry under the concept of smart grids for data exchange and potential applications.La industria eléctrica está experimentando una profunda transformación digital hacia la consolidación de redes inteligentes, que necesita una alta demanda de datos y sistemas de información involucrados en los procesos. Las iniciativas de datos abiertos, que en mayor medida han sido empleadas para iniciativas de gobierno abierto, generan impactos positivos en la sociedad y la economía en cuanto al fácil acceso a los recursos públicos, la agilidad y la transparencia. Estas iniciativas también se pueden adoptar en la industria eléctrica para sistemas de potencia, eléctricos y de energía para su uso en la participación de los clientes, la colaboración y la mejora de consenso en industrias. Esta investigación propone la implementación de una solución de datos abiertos para la industria eléctrica mediante el despliegue de un Hub que ofrece servicios digitales para aplicaciones de ciudad inteligente y la integración del sistema X-Road para mejorar la seguridad e interoperabilidad de los datos abiertos. Esta iniciativa pretende una adopción más amplia de datos abiertos en la industria eléctrica y su preparación para ecosistemas digitales totalmente conectados y colaborativos en ciudades inteligentes, industrias y gobierno. Se muestran algunos resultados relevantes y hallazgos importantes de este trabajo acerca de una arquitectura de datos abiertos para la interoperabilidad del sector eléctrico con otras industrias digitales a través de un Smart City Hub y la adopción tecnológica de 5G, exponiendo los beneficios de promover los datos abiertos y estrategias tecnológicas para sistemas eléctricos digitalizados mientras se considera el humano como factor esencial. Se discuten los pros y los contras de la integración de X-Road con la industria eléctrica dentro del concepto de redes inteligentes para el intercambio de datos y aplicaciones potenciales
    corecore