6,841 research outputs found

    The 1/5-th Rule with Rollbacks: On Self-Adjustment of the Population Size in the (1+(λ,λ))(1+(\lambda,\lambda)) GA

    Full text link
    Self-adjustment of parameters can significantly improve the performance of evolutionary algorithms. A notable example is the (1+(λ,λ))(1+(\lambda,\lambda)) genetic algorithm, where the adaptation of the population size helps to achieve the linear runtime on the OneMax problem. However, on problems which interfere with the assumptions behind the self-adjustment procedure, its usage can lead to performance degradation compared to static parameter choices. In particular, the one fifth rule, which guides the adaptation in the example above, is able to raise the population size too fast on problems which are too far away from the perfect fitness-distance correlation. We propose a modification of the one fifth rule in order to have less negative impact on the performance in scenarios when the original rule reduces the performance. Our modification, while still having a good performance on OneMax, both theoretically and in practice, also shows better results on linear functions with random weights and on random satisfiable MAX-SAT instances.Comment: 17 pages, 2 figures, 1 table. An extended two-page abstract of this work will appear in proceedings of the Genetic and Evolutionary Computation Conference, GECCO'1

    Towards a Theory-Guided Benchmarking Suite for Discrete Black-Box Optimization Heuristics: Profiling (1+λ)(1+\lambda) EA Variants on OneMax and LeadingOnes

    Full text link
    Theoretical and empirical research on evolutionary computation methods complement each other by providing two fundamentally different approaches towards a better understanding of black-box optimization heuristics. In discrete optimization, both streams developed rather independently of each other, but we observe today an increasing interest in reconciling these two sub-branches. In continuous optimization, the COCO (COmparing Continuous Optimisers) benchmarking suite has established itself as an important platform that theoreticians and practitioners use to exchange research ideas and questions. No widely accepted equivalent exists in the research domain of discrete black-box optimization. Marking an important step towards filling this gap, we adjust the COCO software to pseudo-Boolean optimization problems, and obtain from this a benchmarking environment that allows a fine-grained empirical analysis of discrete black-box heuristics. In this documentation we demonstrate how this test bed can be used to profile the performance of evolutionary algorithms. More concretely, we study the optimization behavior of several (1+λ)(1+\lambda) EA variants on the two benchmark problems OneMax and LeadingOnes. This comparison motivates a refined analysis for the optimization time of the (1+λ)(1+\lambda) EA on LeadingOnes
    corecore