11 research outputs found

    Uniform estimates of nonlinear spectral gaps

    Full text link
    By generalizing the path method, we show that nonlinear spectral gaps of a finite connected graph are uniformly bounded from below by a positive constant which is independent of the target metric space. We apply our result to an rr-ball Td,rT_{d,r} in the dd-regular tree, and observe that the asymptotic behavior of nonlinear spectral gaps of Td,rT_{d,r} as rβ†’βˆžr\to\infty does not depend on the target metric space, which is in contrast to the case of a sequence of expanders. We also apply our result to the nn-dimensional Hamming cube HnH_n and obtain an estimate of its nonlinear spectral gap with respect to an arbitrary metric space, which is asymptotically sharp as nβ†’βˆžn\to\infty.Comment: to appear in Graphs and Combinatoric

    Impossibility of dimension reduction in the nuclear norm

    Full text link
    Let S1\mathsf{S}_1 (the Schatten--von Neumann trace class) denote the Banach space of all compact linear operators T:β„“2β†’β„“2T:\ell_2\to \ell_2 whose nuclear norm βˆ₯Tβˆ₯S1=βˆ‘j=1βˆžΟƒj(T)\|T\|_{\mathsf{S}_1}=\sum_{j=1}^\infty\sigma_j(T) is finite, where {Οƒj(T)}j=1∞\{\sigma_j(T)\}_{j=1}^\infty are the singular values of TT. We prove that for arbitrarily large n∈Nn\in \mathbb{N} there exists a subset CβŠ†S1\mathcal{C}\subseteq \mathsf{S}_1 with ∣C∣=n|\mathcal{C}|=n that cannot be embedded with bi-Lipschitz distortion O(1)O(1) into any no(1)n^{o(1)}-dimensional linear subspace of S1\mathsf{S}_1. C\mathcal{C} is not even a O(1)O(1)-Lipschitz quotient of any subset of any no(1)n^{o(1)}-dimensional linear subspace of S1\mathsf{S}_1. Thus, S1\mathsf{S}_1 does not admit a dimension reduction result \'a la Johnson and Lindenstrauss (1984), which complements the work of Harrow, Montanaro and Short (2011) on the limitations of quantum dimension reduction under the assumption that the embedding into low dimensions is a quantum channel. Such a statement was previously known with S1\mathsf{S}_1 replaced by the Banach space β„“1\ell_1 of absolutely summable sequences via the work of Brinkman and Charikar (2003). In fact, the above set C\mathcal{C} can be taken to be the same set as the one that Brinkman and Charikar considered, viewed as a collection of diagonal matrices in S1\mathsf{S}_1. The challenge is to demonstrate that C\mathcal{C} cannot be faithfully realized in an arbitrary low-dimensional subspace of S1\mathsf{S}_1, while Brinkman and Charikar obtained such an assertion only for subspaces of S1\mathsf{S}_1 that consist of diagonal operators (i.e., subspaces of β„“1\ell_1). We establish this by proving that the Markov 2-convexity constant of any finite dimensional linear subspace XX of S1\mathsf{S}_1 is at most a universal constant multiple of log⁑dim(X)\sqrt{\log \mathrm{dim}(X)}
    corecore