60 research outputs found

    ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching

    Full text link
    We investigate the non-identifiability issues associated with bidirectional adversarial training for joint distribution matching. Within a framework of conditional entropy, we propose both adversarial and non-adversarial approaches to learn desirable matched joint distributions for unsupervised and supervised tasks. We unify a broad family of adversarial models as joint distribution matching problems. Our approach stabilizes learning of unsupervised bidirectional adversarial learning methods. Further, we introduce an extension for semi-supervised learning tasks. Theoretical results are validated in synthetic data and real-world applications.Comment: NIPS 2017 (22 pages); short version (9 pages): http://people.duke.edu/~cl319/doc/papers/nips_2017_alice.pd

    Unsupervised Representation Adversarial Learning Network: from Reconstruction to Generation

    Full text link
    A good representation for arbitrarily complicated data should have the capability of semantic generation, clustering and reconstruction. Previous research has already achieved impressive performance on either one. This paper aims at learning a disentangled representation effective for all of them in an unsupervised way. To achieve all the three tasks together, we learn the forward and inverse mapping between data and representation on the basis of a symmetric adversarial process. In theory, we minimize the upper bound of the two conditional entropy loss between the latent variables and the observations together to achieve the cycle consistency. The newly proposed RepGAN is tested on MNIST, fashionMNIST, CelebA, and SVHN datasets to perform unsupervised classification, generation and reconstruction tasks. The result demonstrates that RepGAN is able to learn a useful and competitive representation. To the author's knowledge, our work is the first one to achieve both a high unsupervised classification accuracy and low reconstruction error on MNIST. Codes are available at https://github.com/yzhouas/RepGAN-tensorflow

    Generating Informative and Diverse Conversational Responses via Adversarial Information Maximization

    Full text link
    Responses generated by neural conversational models tend to lack informativeness and diversity. We present Adversarial Information Maximization (AIM), an adversarial learning strategy that addresses these two related but distinct problems. To foster response diversity, we leverage adversarial training that allows distributional matching of synthetic and real responses. To improve informativeness, our framework explicitly optimizes a variational lower bound on pairwise mutual information between query and response. Empirical results from automatic and human evaluations demonstrate that our methods significantly boost informativeness and diversity.Comment: NIPS 201

    Pairwise Augmented GANs with Adversarial Reconstruction Loss

    Full text link
    We propose a novel autoencoding model called Pairwise Augmented GANs. We train a generator and an encoder jointly and in an adversarial manner. The generator network learns to sample realistic objects. In turn, the encoder network at the same time is trained to map the true data distribution to the prior in latent space. To ensure good reconstructions, we introduce an augmented adversarial reconstruction loss. Here we train a discriminator to distinguish two types of pairs: an object with its augmentation and the one with its reconstruction. We show that such adversarial loss compares objects based on the content rather than on the exact match. We experimentally demonstrate that our model generates samples and reconstructions of quality competitive with state-of-the-art on datasets MNIST, CIFAR10, CelebA and achieves good quantitative results on CIFAR10

    Generative Models from the perspective of Continual Learning

    Full text link
    Which generative model is the most suitable for Continual Learning? This paper aims at evaluating and comparing generative models on disjoint sequential image generation tasks. We investigate how several models learn and forget, considering various strategies: rehearsal, regularization, generative replay and fine-tuning. We used two quantitative metrics to estimate the generation quality and memory ability. We experiment with sequential tasks on three commonly used benchmarks for Continual Learning (MNIST, Fashion MNIST and CIFAR10). We found that among all models, the original GAN performs best and among Continual Learning strategies, generative replay outperforms all other methods. Even if we found satisfactory combinations on MNIST and Fashion MNIST, training generative models sequentially on CIFAR10 is particularly instable, and remains a challenge. Our code is available online \footnote{\url{https://github.com/TLESORT/Generative\_Continual\_Learning}}

    Adversarial Information Factorization

    Full text link
    We propose a novel generative model architecture designed to learn representations for images that factor out a single attribute from the rest of the representation. A single object may have many attributes which when altered do not change the identity of the object itself. Consider the human face; the identity of a particular person is independent of whether or not they happen to be wearing glasses. The attribute of wearing glasses can be changed without changing the identity of the person. However, the ability to manipulate and alter image attributes without altering the object identity is not a trivial task. Here, we are interested in learning a representation of the image that separates the identity of an object (such as a human face) from an attribute (such as 'wearing glasses'). We demonstrate the success of our factorization approach by using the learned representation to synthesize the same face with and without a chosen attribute. We refer to this specific synthesis process as image attribute manipulation. We further demonstrate that our model achieves competitive scores, with state of the art, on a facial attribute classification task

    Adversarial Symmetric Variational Autoencoder

    Full text link
    A new form of variational autoencoder (VAE) is developed, in which the joint distribution of data and codes is considered in two (symmetric) forms: (ii) from observed data fed through the encoder to yield codes, and (iiii) from latent codes drawn from a simple prior and propagated through the decoder to manifest data. Lower bounds are learned for marginal log-likelihood fits observed data and latent codes. When learning with the variational bound, one seeks to minimize the symmetric Kullback-Leibler divergence of joint density functions from (ii) and (iiii), while simultaneously seeking to maximize the two marginal log-likelihoods. To facilitate learning, a new form of adversarial training is developed. An extensive set of experiments is performed, in which we demonstrate state-of-the-art data reconstruction and generation on several image benchmark datasets.Comment: Accepted to NIPS 201

    Triangle Generative Adversarial Networks

    Full text link
    A Triangle Generative Adversarial Network (Δ\Delta-GAN) is developed for semi-supervised cross-domain joint distribution matching, where the training data consists of samples from each domain, and supervision of domain correspondence is provided by only a few paired samples. Δ\Delta-GAN consists of four neural networks, two generators and two discriminators. The generators are designed to learn the two-way conditional distributions between the two domains, while the discriminators implicitly define a ternary discriminative function, which is trained to distinguish real data pairs and two kinds of fake data pairs. The generators and discriminators are trained together using adversarial learning. Under mild assumptions, in theory the joint distributions characterized by the two generators concentrate to the data distribution. In experiments, three different kinds of domain pairs are considered, image-label, image-image and image-attribute pairs. Experiments on semi-supervised image classification, image-to-image translation and attribute-based image generation demonstrate the superiority of the proposed approach.Comment: To appear in NIPS 201

    Adversarially Approximated Autoencoder for Image Generation and Manipulation

    Full text link
    Regularized autoencoders learn the latent codes, a structure with the regularization under the distribution, which enables them the capability to infer the latent codes given observations and generate new samples given the codes. However, they are sometimes ambiguous as they tend to produce reconstructions that are not necessarily faithful reproduction of the inputs. The main reason is to enforce the learned latent code distribution to match a prior distribution while the true distribution remains unknown. To improve the reconstruction quality and learn the latent space a manifold structure, this work present a novel approach using the adversarially approximated autoencoder (AAAE) to investigate the latent codes with adversarial approximation. Instead of regularizing the latent codes by penalizing on the distance between the distributions of the model and the target, AAAE learns the autoencoder flexibly and approximates the latent space with a simpler generator. The ratio is estimated using generative adversarial network (GAN) to enforce the similarity of the distributions. Additionally, the image space is regularized with an additional adversarial regularizer. The proposed approach unifies two deep generative models for both latent space inference and diverse generation. The learning scheme is realized without regularization on the latent codes, which also encourages faithful reconstruction. Extensive validation experiments on four real-world datasets demonstrate the superior performance of AAAE. In comparison to the state-of-the-art approaches, AAAE generates samples with better quality and shares the properties of regularized autoencoder with a nice latent manifold structure

    Primal-Dual Wasserstein GAN

    Full text link
    We introduce Primal-Dual Wasserstein GAN, a new learning algorithm for building latent variable models of the data distribution based on the primal and the dual formulations of the optimal transport (OT) problem. We utilize the primal formulation to learn a flexible inference mechanism and to create an optimal approximate coupling between the data distribution and the generative model. In order to learn the generative model, we use the dual formulation and train the decoder adversarially through a critic network that is regularized by the approximate coupling obtained from the primal. Unlike previous methods that violate various properties of the optimal critic, we regularize the norm and the direction of the gradients of the critic function. Our model shares many of the desirable properties of auto-encoding models in terms of mode coverage and latent structure, while avoiding their undesirable averaging properties, e.g. their inability to capture sharp visual features when modeling real images. We compare our algorithm with several other generative modeling techniques that utilize Wasserstein distances on Frechet Inception Distance (FID) and Inception Scores (IS).Comment: 14 pages, 16 figure
    • …
    corecore