24,517 research outputs found

    Optimized Broadcast for Deep Learning Workloads on Dense-GPU InfiniBand Clusters: MPI or NCCL?

    Full text link
    Dense Multi-GPU systems have recently gained a lot of attention in the HPC arena. Traditionally, MPI runtimes have been primarily designed for clusters with a large number of nodes. However, with the advent of MPI+CUDA applications and CUDA-Aware MPI runtimes like MVAPICH2 and OpenMPI, it has become important to address efficient communication schemes for such dense Multi-GPU nodes. This coupled with new application workloads brought forward by Deep Learning frameworks like Caffe and Microsoft CNTK pose additional design constraints due to very large message communication of GPU buffers during the training phase. In this context, special-purpose libraries like NVIDIA NCCL have been proposed for GPU-based collective communication on dense GPU systems. In this paper, we propose a pipelined chain (ring) design for the MPI_Bcast collective operation along with an enhanced collective tuning framework in MVAPICH2-GDR that enables efficient intra-/inter-node multi-GPU communication. We present an in-depth performance landscape for the proposed MPI_Bcast schemes along with a comparative analysis of NVIDIA NCCL Broadcast and NCCL-based MPI_Bcast. The proposed designs for MVAPICH2-GDR enable up to 14X and 16.6X improvement, compared to NCCL-based solutions, for intra- and inter-node broadcast latency, respectively. In addition, the proposed designs provide up to 7% improvement over NCCL-based solutions for data parallel training of the VGG network on 128 GPUs using Microsoft CNTK.Comment: 8 pages, 3 figure

    What does fault tolerant Deep Learning need from MPI?

    Full text link
    Deep Learning (DL) algorithms have become the de facto Machine Learning (ML) algorithm for large scale data analysis. DL algorithms are computationally expensive - even distributed DL implementations which use MPI require days of training (model learning) time on commonly studied datasets. Long running DL applications become susceptible to faults - requiring development of a fault tolerant system infrastructure, in addition to fault tolerant DL algorithms. This raises an important question: What is needed from MPI for de- signing fault tolerant DL implementations? In this paper, we address this problem for permanent faults. We motivate the need for a fault tolerant MPI specification by an in-depth consideration of recent innovations in DL algorithms and their properties, which drive the need for specific fault tolerance features. We present an in-depth discussion on the suitability of different parallelism types (model, data and hybrid); a need (or lack thereof) for check-pointing of any critical data structures; and most importantly, consideration for several fault tolerance proposals (user-level fault mitigation (ULFM), Reinit) in MPI and their applicability to fault tolerant DL implementations. We leverage a distributed memory implementation of Caffe, currently available under the Machine Learning Toolkit for Extreme Scale (MaTEx). We implement our approaches by ex- tending MaTEx-Caffe for using ULFM-based implementation. Our evaluation using the ImageNet dataset and AlexNet, and GoogLeNet neural network topologies demonstrates the effectiveness of the proposed fault tolerant DL implementation using OpenMPI based ULFM

    Hyperdrive: A Multi-Chip Systolically Scalable Binary-Weight CNN Inference Engine

    Get PDF
    Deep neural networks have achieved impressive results in computer vision and machine learning. Unfortunately, state-of-the-art networks are extremely compute and memory intensive which makes them unsuitable for mW-devices such as IoT end-nodes. Aggressive quantization of these networks dramatically reduces the computation and memory footprint. Binary-weight neural networks (BWNs) follow this trend, pushing weight quantization to the limit. Hardware accelerators for BWNs presented up to now have focused on core efficiency, disregarding I/O bandwidth and system-level efficiency that are crucial for deployment of accelerators in ultra-low power devices. We present Hyperdrive: a BWN accelerator dramatically reducing the I/O bandwidth exploiting a novel binary-weight streaming approach, which can be used for arbitrarily sized convolutional neural network architecture and input resolution by exploiting the natural scalability of the compute units both at chip-level and system-level by arranging Hyperdrive chips systolically in a 2D mesh while processing the entire feature map together in parallel. Hyperdrive achieves 4.3 TOp/s/W system-level efficiency (i.e., including I/Os)---3.1x higher than state-of-the-art BWN accelerators, even if its core uses resource-intensive FP16 arithmetic for increased robustness
    • …
    corecore