101 research outputs found

    Xanthus: Push-button Orchestration of Host Provenance Data Collection

    Get PDF
    Host-based anomaly detectors generate alarms by inspecting audit logs for suspicious behavior. Unfortunately, evaluating these anomaly detectors is hard. There are few high-quality, publicly-available audit logs, and there are no pre-existing frameworks that enable push-button creation of realistic system traces. To make trace generation easier, we created Xanthus, an automated tool that orchestrates virtual machines to generate realistic audit logs. Using Xanthus' simple management interface, administrators select a base VM image, configure a particular tracing framework to use within that VM, and define post-launch scripts that collect and save trace data. Once data collection is finished, Xanthus creates a self-describing archive, which contains the VM, its configuration parameters, and the collected trace data. We demonstrate that Xanthus hides many of the tedious (yet subtle) orchestration tasks that humans often get wrong; Xanthus avoids mistakes that lead to non-replicable experiments.Comment: 6 pages, 1 figure, 7 listings, 1 table, worksho

    Ellipsis: Towards Efficient System Auditing for Real-Time Systems

    Full text link
    System auditing is a powerful tool that provides insight into the nature of suspicious events in computing systems, allowing machine operators to detect and subsequently investigate security incidents. While auditing has proven invaluable to the security of traditional computers, existing audit frameworks are rarely designed with consideration for Real-Time Systems (RTS). The transparency provided by system auditing would be of tremendous benefit in a variety of security-critical RTS domains, (e.g., autonomous vehicles); however, if audit mechanisms are not carefully integrated into RTS, auditing can be rendered ineffectual and violate the real-world temporal requirements of the RTS. In this paper, we demonstrate how to adapt commodity audit frameworks to RTS. Using Linux Audit as a case study, we first demonstrate that the volume of audit events generated by commodity frameworks is unsustainable within the temporal and resource constraints of real-time (RT) applications. To address this, we present Ellipsis, a set of kernel-based reduction techniques that leverage the periodic repetitive nature of RT applications to aggressively reduce the costs of system-level auditing. Ellipsis generates succinct descriptions of RT applications' expected activity while retaining a detailed record of unexpected activities, enabling analysis of suspicious activity while meeting temporal constraints. Our evaluation of Ellipsis, using ArduPilot (an open-source autopilot application suite) demonstrates up to 93% reduction in audit log generation.Comment: Extended version of a paper accepted at ESORICS 202
    • …
    corecore