7 research outputs found

    Towards Safe and Secure Autonomous and Cooperative Vehicle Ecosystems

    Get PDF
    Semi-autonomous driver assists are already widely deployed and fully autonomous cars are progressively leaving the realm of laboratories. This evolution coexists with a progressive connectivity and cooperation, creating important safety and security challenges, the latter ranging from casual hackers to highly-skilled attackers, requiring a holistic analysis, under the perspective of fully-fledged ecosystems of autonomous and cooperative vehicles. This position paper attempts at contributing to a better understanding of the global threat plane and the specific threat vectors designers should be at- tentive to. We survey paradigms and mechanisms that may be used to overcome or at least mitigate the potential risks that may arise through the several threat vectors analyzed

    Risks, Safety and Security in the Ecosystem of Smart Cities

    Get PDF
    We have performed a review of systemic risks in smart cities dependent on intelligent and partly autonomous transport systems. Smart cities include concepts such as smart transportation/use of autonomous transportation systems (i.e., autonomous cars, subways, shipping, drones) and improved management of infrastructure (power and water supply). At the same time, this requires safe and resilient infrastructures and need for global collaboration. One challenge is some sort of risk based regulation of emergent vulnerabilities. In this paper we focus on emergent vulnerabilities and discussion of how mitigation can be organized and structured based on emergent and known scenarios cross boundaries. We regard a smart city as a software ecosystem (SEC), defined as a dynamic evolution of systems on top of a common technological platform offering a set of software solutions and services. Software ecosystems are increasingly being used to support critical tasks and operations. As a part of our work we have performed a systematic literature review of safety, security and resilience software ecosystems, in the period 2007–2016. The perspective of software ecosystems has helped to identify and specify patterns of safety, security and resilience on a relevant abstraction level. Significant vulnerabilities and poor awareness of safety, security and resilience has been identified. Key actors that should increase their attention are vendors, regulators, insurance companies and the research community. There is a need to improve private-public partnership and to improve the learning loops between computer emergency teams, security information providers (SIP), regulators and vendors. There is a need to focus more on safety, security and resilience and to establish regulations of responsibilities on the vendors for liabilities

    Human Factors in the Cybersecurity of Autonomous Vehicles: Trends in Current Research

    Get PDF
    The cybersecurity of autonomous vehicles (AVs) is an important emerging area of research in traffic safety. Because human failure is the most common reason for a successful cyberattack, human-factor researchers and psychologists might improve AV cybersecurity by researching how to decrease the probability of a successful attack. We review some areas of research connected to the human factor in cybersecurity and find many potential issues. Psychologists might research the characteristics of people prone to cybersecurity failure, the types of scenarios they fail in and the factors that influence this failure or over-trust of AV. Human behavior during a cyberattack might be researched, as well as how to educate people about cybersecurity. Multitasking has an effect on the ability to defend against a cyberattack and research is needed to set the appropriate policy. Human-resource researchers might investigate the skills required for personnel working in AV cybersecurity and how to detect potential defectors early. The psychological profile of cyber attackers should be investigated to be able to set policies to decrease their motivation. Finally, the decrease of driver’s driving skills as a result of using AV and its connection to cybersecurity skills is also worth of research

    SHARKS: Smart Hacking Approaches for RisK Scanning in Internet-of-Things and Cyber-Physical Systems based on Machine Learning

    Full text link
    Cyber-physical systems (CPS) and Internet-of-Things (IoT) devices are increasingly being deployed across multiple functionalities, ranging from healthcare devices and wearables to critical infrastructures, e.g., nuclear power plants, autonomous vehicles, smart cities, and smart homes. These devices are inherently not secure across their comprehensive software, hardware, and network stacks, thus presenting a large attack surface that can be exploited by hackers. In this article, we present an innovative technique for detecting unknown system vulnerabilities, managing these vulnerabilities, and improving incident response when such vulnerabilities are exploited. The novelty of this approach lies in extracting intelligence from known real-world CPS/IoT attacks, representing them in the form of regular expressions, and employing machine learning (ML) techniques on this ensemble of regular expressions to generate new attack vectors and security vulnerabilities. Our results show that 10 new attack vectors and 122 new vulnerability exploits can be successfully generated that have the potential to exploit a CPS or an IoT ecosystem. The ML methodology achieves an accuracy of 97.4% and enables us to predict these attacks efficiently with an 87.2% reduction in the search space. We demonstrate the application of our method to the hacking of the in-vehicle network of a connected car. To defend against the known attacks and possible novel exploits, we discuss a defense-in-depth mechanism for various classes of attacks and the classification of data targeted by such attacks. This defense mechanism optimizes the cost of security measures based on the sensitivity of the protected resource, thus incentivizing its adoption in real-world CPS/IoT by cybersecurity practitioners.Comment: This article has been accepted in IEEE Transactions on Emerging Topics in Computing. 17 pages, 12 figures, IEEE copyrigh

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen
    corecore