155 research outputs found

    Differentiable Rendering for Pose Estimation in Proximity Operations

    Full text link
    Differentiable rendering aims to compute the derivative of the image rendering function with respect to the rendering parameters. This paper presents a novel algorithm for 6-DoF pose estimation through gradient-based optimization using a differentiable rendering pipeline. We emphasize two key contributions: (1) instead of solving the conventional 2D to 3D correspondence problem and computing reprojection errors, images (rendered using the 3D model) are compared only in the 2D feature space via sparse 2D feature correspondences. (2) Instead of an analytical image formation model, we compute an approximate local gradient of the rendering process through online learning. The learning data consists of image features extracted from multi-viewpoint renders at small perturbations in the pose neighborhood. The gradients are propagated through the rendering pipeline for the 6-DoF pose estimation using nonlinear least squares. This gradient-based optimization regresses directly upon the pose parameters by aligning the 3D model to reproduce a reference image shape. Using representative experiments, we demonstrate the application of our approach to pose estimation in proximity operations.Comment: AIAA SciTech Forum 2023, 13 pages, 9 figure

    6D Object Pose Estimation from Approximate 3D Models for Orbital Robotics

    Full text link
    We present a novel technique to estimate the 6D pose of objects from single images where the 3D geometry of the object is only given approximately and not as a precise 3D model. To achieve this, we employ a dense 2D-to-3D correspondence predictor that regresses 3D model coordinates for every pixel. In addition to the 3D coordinates, our model also estimates the pixel-wise coordinate error to discard correspondences that are likely wrong. This allows us to generate multiple 6D pose hypotheses of the object, which we then refine iteratively using a highly efficient region-based approach. We also introduce a novel pixel-wise posterior formulation by which we can estimate the probability for each hypothesis and select the most likely one. As we show in experiments, our approach is capable of dealing with extreme visual conditions including overexposure, high contrast, or low signal-to-noise ratio. This makes it a powerful technique for the particularly challenging task of estimating the pose of tumbling satellites for in-orbit robotic applications. Our method achieves state-of-the-art performance on the SPEED+ dataset and has won the SPEC2021 post-mortem competition.Comment: preprin

    Robust Adversarial Attacks Detection for Deep Learning based Relative Pose Estimation for Space Rendezvous

    Full text link
    Research on developing deep learning techniques for autonomous spacecraft relative navigation challenges is continuously growing in recent years. Adopting those techniques offers enhanced performance. However, such approaches also introduce heightened apprehensions regarding the trustability and security of such deep learning methods through their susceptibility to adversarial attacks. In this work, we propose a novel approach for adversarial attack detection for deep neural network-based relative pose estimation schemes based on the explainability concept. We develop for an orbital rendezvous scenario an innovative relative pose estimation technique adopting our proposed Convolutional Neural Network (CNN), which takes an image from the chaser's onboard camera and outputs accurately the target's relative position and rotation. We perturb seamlessly the input images using adversarial attacks that are generated by the Fast Gradient Sign Method (FGSM). The adversarial attack detector is then built based on a Long Short Term Memory (LSTM) network which takes the explainability measure namely SHapley Value from the CNN-based pose estimator and flags the detection of adversarial attacks when acting. Simulation results show that the proposed adversarial attack detector achieves a detection accuracy of 99.21%. Both the deep relative pose estimator and adversarial attack detector are then tested on real data captured from our laboratory-designed setup. The experimental results from our laboratory-designed setup demonstrate that the proposed adversarial attack detector achieves an average detection accuracy of 96.29%

    Instance Segmentation for Feature Recognition on Noncooperative Resident Space Objects

    Get PDF
    Active debris removal and unmanned on-orbit servicing missions have gained interest in the last few years, along with the possibility to perform them through the use of an autonomous chasing spacecraft. In this work, new resources are proposed to aid the implementation of guidance, navigation, and control algorithms for satellites devoted to the inspection of noncooperative targets before any proximity operation is initiated. In particular, the use of convolutional neural networks (CNN) performing object detection and instance segmentation is proposed, and its effectiveness in recognizing the components and parts of the target satellite is evaluated. Yet, no reliable training images dataset of this kind exists to date. A tailored and publicly available software has been developed to overcome this limitation by generating synthetic images. Computer-aided design models of existing satellites are loaded on a three-dimensional animation software and used to programmatically render images of the objects from different points of view and in different lighting conditions, together with the necessary ground truth labels and masks for each image. The results show how a relatively low number of iterations is sufficient for a CNN trained on such datasets to reach a mean average precision value in line with state-of-the-art performances achieved by CNN in common datasets. An assessment of the performance of the neural network when trained on different conditions is provided. To conclude, the method is tested on real images from the Mission Extension Vehicle-1 on-orbit servicing mission, showing that using only artificially generated images to train the model does not compromise the learning process
    • …
    corecore