37 research outputs found

    Towards reliable grasping and manipulation in household environments

    Get PDF
    Abstract We present a complete software architecture for reliable grasping of household objects. Our work combines aspects such as scene interpretation from 3D range data, grasp planning, motion planning, and grasp failure identification and recovery using tactile sensors. We build upon, and add several new contributions to the significant prior work in these areas. A salient feature of our work is the tight coupling between perception (both visual and tactile) and manipulation, aiming to address the uncertainty due to sensor and execution errors. This integration effort has revealed new challenges, some of which can be addressed through system and software engineering, and some of which present opportunities for future research. Our approach is aimed at typical indoor environments, and is validated by long running experiments where the PR2 robotic platform was able to consistently grasp a large variety of known and unknown objects. The set of tools and algorithms for object grasping presented here have been integrated into the open-source Robot Operating System (ROS)

    Efficient Fully Convolution Neural Network for Generating Pixel Wise Robotic Grasps With High Resolution Images

    Full text link
    This paper presents an efficient neural network model to generate robotic grasps with high resolution images. The proposed model uses fully convolution neural network to generate robotic grasps for each pixel using 400 ×\times 400 high resolution RGB-D images. It first down-sample the images to get features and then up-sample those features to the original size of the input as well as combines local and global features from different feature maps. Compared to other regression or classification methods for detecting robotic grasps, our method looks more like the segmentation methods which solves the problem through pixel-wise ways. We use Cornell Grasp Dataset to train and evaluate the model and get high accuracy about 94.42% for image-wise and 91.02% for object-wise and fast prediction time about 8ms. We also demonstrate that without training on the multiple objects dataset, our model can directly output robotic grasps candidates for different objects because of the pixel wise implementation.Comment: Submitted to ROBIO 201

    Hierarchical Salient Object Detection for Assisted Grasping

    Full text link
    Visual scene decomposition into semantic entities is one of the major challenges when creating a reliable object grasping system. Recently, we introduced a bottom-up hierarchical clustering approach which is able to segment objects and parts in a scene. In this paper, we introduce a transform from such a segmentation into a corresponding, hierarchical saliency function. In comprehensive experiments we demonstrate its ability to detect salient objects in a scene. Furthermore, this hierarchical saliency defines a most salient corresponding region (scale) for every point in an image. Based on this, an easy-to-use pick and place manipulation system was developed and tested exemplarily.Comment: Accepted for ICRA 201

    Semantic Robot Programming for Goal-Directed Manipulation in Cluttered Scenes

    Full text link
    We present the Semantic Robot Programming (SRP) paradigm as a convergence of robot programming by demonstration and semantic mapping. In SRP, a user can directly program a robot manipulator by demonstrating a snapshot of their intended goal scene in workspace. The robot then parses this goal as a scene graph comprised of object poses and inter-object relations, assuming known object geometries. Task and motion planning is then used to realize the user's goal from an arbitrary initial scene configuration. Even when faced with different initial scene configurations, SRP enables the robot to seamlessly adapt to reach the user's demonstrated goal. For scene perception, we propose the Discriminatively-Informed Generative Estimation of Scenes and Transforms (DIGEST) method to infer the initial and goal states of the world from RGBD images. The efficacy of SRP with DIGEST perception is demonstrated for the task of tray-setting with a Michigan Progress Fetch robot. Scene perception and task execution are evaluated with a public household occlusion dataset and our cluttered scene dataset.Comment: published in ICRA 201

    Domain Randomization and Generative Models for Robotic Grasping

    Full text link
    Deep learning-based robotic grasping has made significant progress thanks to algorithmic improvements and increased data availability. However, state-of-the-art models are often trained on as few as hundreds or thousands of unique object instances, and as a result generalization can be a challenge. In this work, we explore a novel data generation pipeline for training a deep neural network to perform grasp planning that applies the idea of domain randomization to object synthesis. We generate millions of unique, unrealistic procedurally generated objects, and train a deep neural network to perform grasp planning on these objects. Since the distribution of successful grasps for a given object can be highly multimodal, we propose an autoregressive grasp planning model that maps sensor inputs of a scene to a probability distribution over possible grasps. This model allows us to sample grasps efficiently at test time (or avoid sampling entirely). We evaluate our model architecture and data generation pipeline in simulation and the real world. We find we can achieve a >>90% success rate on previously unseen realistic objects at test time in simulation despite having only been trained on random objects. We also demonstrate an 80% success rate on real-world grasp attempts despite having only been trained on random simulated objects.Comment: 8 pages, 11 figures. Submitted to 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2018
    corecore