13,126 research outputs found

    Back to the Future: Economic Self-Organisation and Maximum Entropy Prediction

    Get PDF
    This paper shows that signal restoration methodology is appropriate for predicting the equilibrium state of certain economic systems. A formal justification for this is provided by proving the existence of finite improvement paths in object allocation problems under weak assumptions on preferences, linking any initial condition to a Nash equilibrium. Because a finite improvement path is made up of a sequence of systematic best-responses, backwards movement from the equilibrium back to the initial condition can be treated like the realisation of a noise process. This underpins the use of signal restoration to predict the equilibrium from the initial condition, and an illustration is provided through an application of maximum entropy signal restoration to the Schelling model of segregation

    Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation

    Get PDF
    This paper surveys the current state of the art in Natural Language Generation (NLG), defined as the task of generating text or speech from non-linguistic input. A survey of NLG is timely in view of the changes that the field has undergone over the past decade or so, especially in relation to new (usually data-driven) methods, as well as new applications of NLG technology. This survey therefore aims to (a) give an up-to-date synthesis of research on the core tasks in NLG and the architectures adopted in which such tasks are organised; (b) highlight a number of relatively recent research topics that have arisen partly as a result of growing synergies between NLG and other areas of artificial intelligence; (c) draw attention to the challenges in NLG evaluation, relating them to similar challenges faced in other areas of Natural Language Processing, with an emphasis on different evaluation methods and the relationships between them.Comment: Published in Journal of AI Research (JAIR), volume 61, pp 75-170. 118 pages, 8 figures, 1 tabl

    Cluster-based reduced-order modelling of a mixing layer

    Full text link
    We propose a novel cluster-based reduced-order modelling (CROM) strategy of unsteady flows. CROM combines the cluster analysis pioneered in Gunzburger's group (Burkardt et al. 2006) and and transition matrix models introduced in fluid dynamics in Eckhardt's group (Schneider et al. 2007). CROM constitutes a potential alternative to POD models and generalises the Ulam-Galerkin method classically used in dynamical systems to determine a finite-rank approximation of the Perron-Frobenius operator. The proposed strategy processes a time-resolved sequence of flow snapshots in two steps. First, the snapshot data are clustered into a small number of representative states, called centroids, in the state space. These centroids partition the state space in complementary non-overlapping regions (centroidal Voronoi cells). Departing from the standard algorithm, the probabilities of the clusters are determined, and the states are sorted by analysis of the transition matrix. Secondly, the transitions between the states are dynamically modelled using a Markov process. Physical mechanisms are then distilled by a refined analysis of the Markov process, e.g. using finite-time Lyapunov exponent and entropic methods. This CROM framework is applied to the Lorenz attractor (as illustrative example), to velocity fields of the spatially evolving incompressible mixing layer and the three-dimensional turbulent wake of a bluff body. For these examples, CROM is shown to identify non-trivial quasi-attractors and transition processes in an unsupervised manner. CROM has numerous potential applications for the systematic identification of physical mechanisms of complex dynamics, for comparison of flow evolution models, for the identification of precursors to desirable and undesirable events, and for flow control applications exploiting nonlinear actuation dynamics.Comment: 48 pages, 30 figures. Revised version with additional material. Accepted for publication in Journal of Fluid Mechanic

    Numerical treatment of imprecise random fields in non-linear solid mechanics

    Get PDF
    The quantification and propagation of mixed uncertain material parameters in the context of solid mechanical finite element simulations is studied. While aleatory uncertainties appear in terms of spatial varying parameters, i.e. random fields, the epistemic character is induced by a lack of knowledge regarding the correlation length, which is therefore described by interval values. The concept and description of the resulting imprecise random fields is introduced in detail. The challenges occurring from interval valued correlation lengths are clarified. These include mainly the stochastic dimension, which can become very high under some circumstances, as well as the comparability of different correlation length scenarios with regard to the underlying truncation error of the applied Karhunen-Loève expansion. Additionally, the computation time can increase drastically, if the straightforward and robust double loop approach is applied. Sparse stochastic collocation method and sparse polynomial chaos expansion are studied to reduce the number of required sample evaluations, i.e. the computational cost. To keep the stochastic dimension as low as possible, the random fields are described by Karhunen-Loève expansion, using a modified exponential correlation kernel, which is advantageous in terms of a fast convergence while providing an analytic solution. Still, for small correlation lengths, the investigated approaches are limited by the curse of dimensionality. Furthermore, they turn out to be not suited for non-linear material models. As a straightforward alternative, a decoupled interpolation approach is proposed, offering a practical engineering estimate. For this purpose, the uncertain quantities only need to be propagated as a random variable and deterministically in terms of the mean values. From these results, the so-called absolutely no idea probability box (ani-p-box) can be obtained, bounding the results of the interval valued correlation length being between zero and infinity. The idea is, to interpolate the result of any arbitrary correlation length within this ani-p-box, exploiting prior knowledge about the statistical behaviour of the input random field corresponding to the correlation length. The new approach is studied for one- and two-dimensional random fields. Furthermore, linear and non-linear finite element models are used in terms of linear-elastic or elasto-plastic material laws, the latter including linear hardening. It appears that the approach only works satisfyingly for sufficiently smooth responses but an improvement by considering also higher order statistics is motivated for future research.DFG/SPP 1886/NA330/12-1/E

    Just below the surface: developing knowledge management systems using the paradigm of the noetic prism

    Get PDF
    In this paper we examine how the principles embodied in the paradigm of the noetic prism can illuminate the construction of knowledge management systems. We draw on the formalism of the prism to examine three successful tools: frames, spreadsheets and databases, and show how their power and also their shortcomings arise from their domain representation, and how any organisational system based on integration of these tools and conversion between them is inevitably lossy. We suggest how a late-binding, hybrid knowledge based management system (KBMS) could be designed that draws on the lessons learnt from these tools, by maintaining noetica at an atomic level and storing the combinatory processes necessary to create higher level structure as the need arises. We outline the “just-below-the-surface” systems design, and describe its implementation in an enterprise-wide knowledge-based system that has all of the conventional office automation features

    Physics with Coherent Matter Waves

    Full text link
    This review discusses progress in the new field of coherent matter waves, in particular with respect to Bose-Einstein condensates. We give a short introduction to Bose-Einstein condensation and the theoretical description of the condensate wavefunction. We concentrate on the coherence properties of this new type of matter wave as a basis for fundamental physics and applications. The main part of this review treats various measurements and concepts in the physics with coherent matter waves. In particular we present phase manipulation methods, atom lasers, nonlinear atom optics, optical elements, interferometry and physics in optical lattices. We give an overview of the state of the art in the respective fields and discuss achievements and challenges for the future

    Preliminary specification and design documentation for software components to achieve catallaxy in computational systems

    Get PDF
    This Report is about the preliminary specifications and design documentation for software components to achieve Catallaxy in computational systems. -- Die Arbeit beschreibt die Spezifikation und das Design von Softwarekomponenten, um das Konzept der Katallaxie in Grid Systemen umzusetzen. Eine Einführung ordnet das Konzept der Katallaxie in bestehende Grid Taxonomien ein und stellt grundlegende Komponenten vor. Anschließend werden diese Komponenten auf ihre Anwendbarkeit in bestehenden Application Layer Netzwerken untersucht.Grid Computing
    corecore