584 research outputs found

    Security of two recent constant-round password authenticated group key exchange schemes

    Get PDF
    When humans interact with machines in their daily networks, it is important that security of the communications is offered, and where the involved shared secrets used to achieve this are easily remembered by humans. Password-based authenticated group key exchange (PAGKE) schemes allow group users to share a session key based on a human-memorizable password. In this paper, we consider two PAGKE schemes that build on the seminal scheme of Burmester and Desmedt. Weshow an undetectable online dictionary attack on the first scheme, and exploit the partnering definition to break the key indistinguishability of the second scheme

    Scalable and Robust Distributed Algorithms for Privacy-Preserving Applications

    Get PDF
    We live in an era when political and commercial entities are increasingly engaging in sophisticated cyber attacks to damage, disrupt, or censor information content and to conduct mass surveillance. By compiling various patterns from user data over time, untrusted parties could create an intimate picture of sensitive personal information such as political and religious beliefs, health status, and so forth. In this dissertation, we study scalable and robust distributed algorithms that guarantee user privacy when communicating with other parties to either solely exchange information or participate in multi-party computations. We consider scalability and robustness requirements in three privacy-preserving areas: secure multi-party computation (MPC), anonymous broadcast, and blocking-resistant Tor bridge distribution. We propose decentralized algorithms for MPC that, unlike most previous work, scale well with the number of parties and tolerate malicious faults from a large fraction of the parties. Our algorithms do not require any trusted party and are fully load-balanced. Anonymity is an essential tool for achieving privacy; it enables individuals to communicate with each other without being identified as the sender or the receiver of the information being exchanged. We show that our MPC algorithms can be effectively used to design a scalable anonymous broadcast protocol. We do this by developing a multi-party shuffling protocol that can efficiently anonymize a sequence of messages in the presence of many faulty nodes. Our final approach for preserving user privacy in cyberspace is to improve Tor; the most popular anonymity network in the Internet. A current challenge with Tor is that colluding corrupt users inside a censorship territory can completely block user\u27s access to Tor by obtaining information about a large fraction of Tor bridges; a type of relay nodes used as the Tor\u27s primary mechanism for blocking-resistance. We describe a randomized bridge distribution algorithm, where all honest users are guaranteed to connect to Tor in the presence of an adversary corrupting an unknown number of users. Our simulations suggest that, with minimal resource costs, our algorithm can guarantee Tor access for all honest users after a small (logarithmic) number of rounds

    QuickSync: A Quickly Synchronizing PoS-Based Blockchain Protocol

    Full text link
    To implement a blockchain, we need a blockchain protocol for all the nodes to follow. To design a blockchain protocol, we need a block publisher selection mechanism and a chain selection rule. In Proof-of-Stake (PoS) based blockchain protocols, block publisher selection mechanism selects the node to publish the next block based on the relative stake held by the node. However, PoS protocols, such as Ouroboros v1, may face vulnerability to fully adaptive corruptions. In this paper, we propose a novel PoS-based blockchain protocol, QuickSync, to achieve security against fully adaptive corruptions while improving on performance. We propose a metric called block power, a value defined for each block, derived from the output of the verifiable random function based on the digital signature of the block publisher. With this metric, we compute chain power, the sum of block powers of all the blocks comprising the chain, for all the valid chains. These metrics are a function of the block publisher's stake to enable the PoS aspect of the protocol. The chain selection rule selects the chain with the highest chain power as the one to extend. This chain selection rule hence determines the selected block publisher of the previous block. When we use metrics to define the chain selection rule, it may lead to vulnerabilities against Sybil attacks. QuickSync uses a Sybil attack resistant function implemented using histogram matching. We prove that QuickSync satisfies common prefix, chain growth, and chain quality properties and hence it is secure. We also show that it is resilient to different types of adversarial attack strategies. Our analysis demonstrates that QuickSync performs better than Bitcoin by an order of magnitude on both transactions per second and time to finality, and better than Ouroboros v1 by a factor of three on time to finality

    Adaptive trust and reputation system as a security service in group communications

    Get PDF
    Group communications has been facilitating many emerging applications which require packet delivery from one or more sender(s) to multiple receivers. Owing to the multicasting and broadcasting nature, group communications are susceptible to various kinds of attacks. Though a number of proposals have been reported to secure group communications, provisioning security in group communications remains a critical and challenging issue. This work first presents a survey on recent advances in security requirements and services in group communications in wireless and wired networks, and discusses challenges in designing secure group communications in these networks. Effective security services to secure group communications are then proposed. This dissertation also introduces the taxonomy of security services, which can be applied to secure group communications, and evaluates existing secure group communications schemes. This dissertation work analyzes a number of vulnerabilities against trust and reputation systems, and proposes a threat model to predict attack behaviors. This work also considers scenarios in which multiple attacking agents actively and collaboratively attack the whole network as well as a specific individual node. The behaviors may be related to both performance issues and security issues. Finally, this work extensively examines and substantiates the security of the proposed trust and reputation system. This work next discusses the proposed trust and reputation system for an anonymous network, referred to as the Adaptive Trust-based Anonymous Network (ATAN). The distributed and decentralized network management in ATAN does not require a central authority so that ATAN alleviates the problem of a single point of failure. In ATAN, the trust and reputation system aims to enhance anonymity by establishing a trust and reputation relationship between the source and the forwarding members. The trust and reputation relationship of any two nodes is adaptive to new information learned by these two nodes or recommended from other trust nodes. Therefore, packets are anonymously routed from the \u27trusted\u27 source to the destination through \u27trusted\u27 intermediate nodes, thereby improving anonymity of communications. In the performance analysis, the ratio of the ATAN header and data payload is around 0.1, which is relatively small. This dissertation offers analysis on security services on group communications. It illustrates that these security services are needed to incorporate with each other such that group communications can be secure. Furthermore, the adaptive trust and reputation system is proposed to integrate the concept of trust and reputation into communications. Although deploying the trust and reputation system incurs some overheads in terms of storage spaces, bandwidth and computation cycles, it shows a very promising performance that enhance users\u27 confidence in using group communications, and concludes that the trust and reputation system should be deployed as another layer of security services to protect group communications against malicious adversaries and attacks

    KALwEN: a new practical and interoperable key management scheme for body sensor networks

    Get PDF
    Key management is the pillar of a security architecture. Body sensor networks (BSNs) pose several challenges–some inherited from wireless sensor networks (WSNs), some unique to themselves–that require a new key management scheme to be tailor-made. The challenge is taken on, and the result is KALwEN, a new parameterized key management scheme that combines the best-suited cryptographic techniques in a seamless framework. KALwEN is user-friendly in the sense that it requires no expert knowledge of a user, and instead only requires a user to follow a simple set of instructions when bootstrapping or extending a network. One of KALwEN's key features is that it allows sensor devices from different manufacturers, which expectedly do not have any pre-shared secret, to establish secure communications with each other. KALwEN is decentralized, such that it does not rely on the availability of a local processing unit (LPU). KALwEN supports secure global broadcast, local broadcast, and local (neighbor-to-neighbor) unicast, while preserving past key secrecy and future key secrecy (FKS). The fact that the cryptographic protocols of KALwEN have been formally verified also makes a convincing case. With both formal verification and experimental evaluation, our results should appeal to theorists and practitioners alike
    corecore