2 research outputs found

    Modeling Sensing and Perception Errors towards Robust Decision Making in Autonomous Vehicles

    Full text link
    Sensing and Perception (S&P) is a crucial component of an autonomous system (such as a robot), especially when deployed in highly dynamic environments where it is required to react to unexpected situations. This is particularly true in case of Autonomous Vehicles (AVs) driving on public roads. However, the current evaluation metrics for perception algorithms are typically designed to measure their accuracy per se and do not account for their impact on the decision making subsystem(s). This limitation does not help developers and third party evaluators to answer a critical question: is the performance of a perception subsystem sufficient for the decision making subsystem to make robust, safe decisions? In this paper, we propose a simulation-based methodology towards answering this question. At the same time, we show how to analyze the impact of different kinds of sensing and perception errors on the behavior of the autonomous system.Comment: 11 pages, 8 figures. Preprint of an article submitted to IJCAI202

    Synthetic Data for Deep Learning

    Full text link
    Synthetic data is an increasingly popular tool for training deep learning models, especially in computer vision but also in other areas. In this work, we attempt to provide a comprehensive survey of the various directions in the development and application of synthetic data. First, we discuss synthetic datasets for basic computer vision problems, both low-level (e.g., optical flow estimation) and high-level (e.g., semantic segmentation), synthetic environments and datasets for outdoor and urban scenes (autonomous driving), indoor scenes (indoor navigation), aerial navigation, simulation environments for robotics, applications of synthetic data outside computer vision (in neural programming, bioinformatics, NLP, and more); we also survey the work on improving synthetic data development and alternative ways to produce it such as GANs. Second, we discuss in detail the synthetic-to-real domain adaptation problem that inevitably arises in applications of synthetic data, including synthetic-to-real refinement with GAN-based models and domain adaptation at the feature/model level without explicit data transformations. Third, we turn to privacy-related applications of synthetic data and review the work on generating synthetic datasets with differential privacy guarantees. We conclude by highlighting the most promising directions for further work in synthetic data studies.Comment: 156 pages, 24 figures, 719 reference
    corecore