19 research outputs found

    Attention-Privileged Reinforcement Learning

    Full text link
    Image-based Reinforcement Learning is known to suffer from poor sample efficiency and generalisation to unseen visuals such as distractors (task-independent aspects of the observation space). Visual domain randomisation encourages transfer by training over visual factors of variation that may be encountered in the target domain. This increases learning complexity, can negatively impact learning rate and performance, and requires knowledge of potential variations during deployment. In this paper, we introduce Attention-Privileged Reinforcement Learning (APRiL) which uses a self-supervised attention mechanism to significantly alleviate these drawbacks: by focusing on task-relevant aspects of the observations, attention provides robustness to distractors as well as significantly increased learning efficiency. APRiL trains two attention-augmented actor-critic agents: one purely based on image observations, available across training and transfer domains; and one with access to privileged information (such as environment states) available only during training. Experience is shared between both agents and their attention mechanisms are aligned. The image-based policy can then be deployed without access to privileged information. We experimentally demonstrate accelerated and more robust learning on a diverse set of domains, leading to improved final performance for environments both within and outside the training distribution.Comment: Published at Conference on Robot Learning (CoRL) 202

    Ranking Policy Decisions

    Full text link
    Policies trained via Reinforcement Learning (RL) are often needlessly complex, making them difficult to analyse and interpret. In a run with nn time steps, a policy will make nn decisions on actions to take; we conjecture that only a small subset of these decisions delivers value over selecting a simple default action. Given a trained policy, we propose a novel black-box method based on statistical fault localisation that ranks the states of the environment according to the importance of decisions made in those states. We argue that among other things, the ranked list of states can help explain and understand the policy. As the ranking method is statistical, a direct evaluation of its quality is hard. As a proxy for quality, we use the ranking to create new, simpler policies from the original ones by pruning decisions identified as unimportant (that is, replacing them by default actions) and measuring the impact on performance. Our experiments on a diverse set of standard benchmarks demonstrate that pruned policies can perform on a level comparable to the original policies. Conversely, we show that naive approaches for ranking policy decisions, e.g., ranking based on the frequency of visiting a state, do not result in high-performing pruned policies

    Specifying and Interpreting Reinforcement Learning Policies through Simulatable Machine Learning

    Full text link
    Human-AI collaborative policy synthesis is a procedure in which (1) a human initializes an autonomous agent's behavior, (2) Reinforcement Learning improves the human specified behavior, and (3) the agent can explain the final optimized policy to the user. This paradigm leverages human expertise and facilitates a greater insight into the learned behaviors of an agent. Existing approaches to enabling collaborative policy specification involve black box methods which are unintelligible and are not catered towards non-expert end-users. In this paper, we develop a novel collaborative framework to enable humans to initialize and interpret an autonomous agent's behavior, rooted in principles of human-centered design. Through our framework, we enable humans to specify an initial behavior model in the form of unstructured, natural language, which we then convert to lexical decision trees. Next, we are able to leverage these human-specified policies, to warm-start reinforcement learning and further allow the agent to optimize the policies through reinforcement learning. Finally, to close the loop on human-specification, we produce explanations of the final learned policy, in multiple modalities, to provide the user a final depiction about the learned policy of the agent. We validate our approach by showing that our model can produce >80% accuracy, and that human-initialized policies are able to successfully warm-start RL. We then conduct a novel human-subjects study quantifying the relative subjective and objective benefits of varying XAI modalities(e.g., Tree, Language, and Program) for explaining learned policies to end-users, in terms of usability and interpretability and identify the circumstances that influence these measures. Our findings emphasize the need for personalized explainable systems that can facilitate user-centric policy explanations for a variety of end-users
    corecore