711 research outputs found

    Learning Language from a Large (Unannotated) Corpus

    Full text link
    A novel approach to the fully automated, unsupervised extraction of dependency grammars and associated syntax-to-semantic-relationship mappings from large text corpora is described. The suggested approach builds on the authors' prior work with the Link Grammar, RelEx and OpenCog systems, as well as on a number of prior papers and approaches from the statistical language learning literature. If successful, this approach would enable the mining of all the information needed to power a natural language comprehension and generation system, directly from a large, unannotated corpus.Comment: 29 pages, 5 figures, research proposa

    Analysing Lexical Semantic Change with Contextualised Word Representations

    Get PDF
    This paper presents the first unsupervised approach to lexical semantic change that makes use of contextualised word representations. We propose a novel method that exploits the BERT neural language model to obtain representations of word usages, clusters these representations into usage types, and measures change along time with three proposed metrics. We create a new evaluation dataset and show that the model representations and the detected semantic shifts are positively correlated with human judgements. Our extensive qualitative analysis demonstrates that our method captures a variety of synchronic and diachronic linguistic phenomena. We expect our work to inspire further research in this direction.Comment: To appear in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL-2020

    Machine Learning in Automated Text Categorization

    Full text link
    The automated categorization (or classification) of texts into predefined categories has witnessed a booming interest in the last ten years, due to the increased availability of documents in digital form and the ensuing need to organize them. In the research community the dominant approach to this problem is based on machine learning techniques: a general inductive process automatically builds a classifier by learning, from a set of preclassified documents, the characteristics of the categories. The advantages of this approach over the knowledge engineering approach (consisting in the manual definition of a classifier by domain experts) are a very good effectiveness, considerable savings in terms of expert manpower, and straightforward portability to different domains. This survey discusses the main approaches to text categorization that fall within the machine learning paradigm. We will discuss in detail issues pertaining to three different problems, namely document representation, classifier construction, and classifier evaluation.Comment: Accepted for publication on ACM Computing Survey

    Multimodal Event Knowledge. Psycholinguistic and Computational Experiments

    Get PDF

    Document analysis by means of data mining techniques

    Get PDF
    The huge amount of textual data produced everyday by scientists, journalists and Web users, allows investigating many different aspects of information stored in the published documents. Data mining and information retrieval techniques are exploited to manage and extract information from huge amount of unstructured textual data. Text mining also known as text data mining is the processing of extracting high quality information (focusing relevance, novelty and interestingness) from text by identifying patterns etc. Text mining typically involves the process of structuring input text by means of parsing and other linguistic features or sometimes by removing extra data and then finding patterns from structured data. Patterns are then evaluated at last and interpretation of output is performed to accomplish the desired task. Recently, text mining has got attention in several fields such as in security (involves analysis of Internet news), for commercial (for search and indexing purposes) and in academic departments (such as answering query). Beyond searching the documents consisting the words given in a user query, text mining may provide direct answer to user by semantic web for content based (content meaning and its context). It can also act as intelligence analyst and can also be used in some email spam filters for filtering out unwanted material. Text mining usually includes tasks such as clustering, categorization, sentiment analysis, entity recognition, entity relation modeling and document summarization. In particular, summarization approaches are suitable for identifying relevant sentences that describe the main concepts presented in a document dataset. Furthermore, the knowledge existed in the most informative sentences can be employed to improve the understanding of user and/or community interests. Different approaches have been proposed to extract summaries from unstructured text documents. Some of them are based on the statistical analysis of linguistic features by means of supervised machine learning or data mining methods, such as Hidden Markov models, neural networks and Naive Bayes methods. An appealing research field is the extraction of summaries tailored to the major user interests. In this context, the problem of extracting useful information according to domain knowledge related to the user interests is a challenging task. The main topics have been to study and design of novel data representations and data mining algorithms useful for managing and extracting knowledge from unstructured documents. This thesis describes an effort to investigate the application of data mining approaches, firmly established in the subject of transactional data (e.g., frequent itemset mining), to textual documents. Frequent itemset mining is a widely exploratory technique to discover hidden correlations that frequently occur in the source data. Although its application to transactional data is well-established, the usage of frequent itemsets in textual document summarization has never been investigated so far. A work is carried on exploiting frequent itemsets for the purpose of multi-document summarization so a novel multi-document summarizer, namely ItemSum (Itemset-based Summarizer) is presented, that is based on an itemset-based model, i.e., a framework comprise of frequent itemsets, taken out from the document collection. Highly representative and not redundant sentences are selected for generating summary by considering both sentence coverage, with respect to a sentence relevance score, based on tf-idf statistics, and a concise and highly informative itemset-based model. To evaluate the ItemSum performance a suite of experiments on a collection of news articles has been performed. Obtained results show that ItemSum significantly outperforms mostly used previous summarizers in terms of precision, recall, and F-measure. We also validated our approach against a large number of approaches on the DUC’04 document collection. Performance comparisons, in terms of precision, recall, and F-measure, have been performed by means of the ROUGE toolkit. In most cases, ItemSum significantly outperforms the considered competitors. Furthermore, the impact of both the main algorithm parameters and the adopted model coverage strategy on the summarization performance are investigated as well. In some cases, the soundness and readability of the generated summaries are unsatisfactory, because the summaries do not cover in an effective way all the semantically relevant data facets. A step beyond towards the generation of more accurate summaries has been made by semantics-based summarizers. Such approaches combine the use of general-purpose summarization strategies with ad-hoc linguistic analysis. The key idea is to also consider the semantics behind the document content to overcome the limitations of general-purpose strategies in differentiating between sentences based on their actual meaning and context. Most of the previously proposed approaches perform the semantics-based analysis as a preprocessing step that precedes the main summarization process. Therefore, the generated summaries could not entirely reflect the actual meaning and context of the key document sentences. In contrast, we aim at tightly integrating the ontology-based document analysis into the summarization process in order to take the semantic meaning of the document content into account during the sentence evaluation and selection processes. With this in mind, we propose a new multi-document summarizer, namely Yago-based Summarizer, that integrates an established ontology-based entity recognition and disambiguation step. Named Entity Recognition from Yago ontology is being used for the task of text summarization. The Named Entity Recognition (NER) task is concerned with marking occurrences of a specific object being mentioned. These mentions are then classified into a set of predefined categories. Standard categories include “person”, “location”, “geo-political organization”, “facility”, “organization”, and “time”. The use of NER in text summarization improved the summarization process by increasing the rank of informative sentences. To demonstrate the effectiveness of the proposed approach, we compared its performance on the DUC’04 benchmark document collections with that of a large number of state-of-the-art summarizers. Furthermore, we also performed a qualitative evaluation of the soundness and readability of the generated summaries and a comparison with the results that were produced by the most effective summarizers. A parallel effort has been devoted to integrating semantics-based models and the knowledge acquired from social networks into a document summarization model named as SociONewSum. The effort addresses the sentence-based generic multi-document summarization problem, which can be formulated as follows: given a collection of news articles ranging over the same topic, the goal is to extract a concise yet informative summary, which consists of most salient document sentences. An established ontological model has been used to improve summarization performance by integrating a textual entity recognition and disambiguation step. Furthermore, the analysis of the user-generated content coming from Twitter has been exploited to discover current social trends and improve the appealing of the generated summaries. An experimental evaluation of the SociONewSum performance was conducted on real English-written news article collections and Twitter posts. The achieved results demonstrate the effectiveness of the proposed summarizer, in terms of different ROUGE scores, compared to state-of-the-art open source summarizers as well as to a baseline version of the SociONewSum summarizer that does not perform any UGC analysis. Furthermore, the readability of the generated summaries has also been analyzed

    Complexity of Lexical Descriptions and its Relevance to Partial Parsing

    Get PDF
    In this dissertation, we have proposed novel methods for robust parsing that integrate the flexibility of linguistically motivated lexical descriptions with the robustness of statistical techniques. Our thesis is that the computation of linguistic structure can be localized if lexical items are associated with rich descriptions (supertags) that impose complex constraints in a local context. However, increasing the complexity of descriptions makes the number of different descriptions for each lexical item much larger and hence increases the local ambiguity for a parser. This local ambiguity can be resolved by using supertag co-occurrence statistics collected from parsed corpora. We have explored these ideas in the context of Lexicalized Tree-Adjoining Grammar (LTAG) framework wherein supertag disambiguation provides a representation that is an almost parse. We have used the disambiguated supertag sequence in conjunction with a lightweight dependency analyzer to compute noun groups, verb groups, dependency linkages and even partial parses. We have shown that a trigram-based supertagger achieves an accuracy of 92.1‰ on Wall Street Journal (WSJ) texts. Furthermore, we have shown that the lightweight dependency analysis on the output of the supertagger identifies 83‰ of the dependency links accurately. We have exploited the representation of supertags with Explanation-Based Learning to improve parsing effciency. In this approach, parsing in limited domains can be modeled as a Finite-State Transduction. We have implemented such a system for the ATIS domain which improves parsing eciency by a factor of 15. We have used the supertagger in a variety of applications to provide lexical descriptions at an appropriate granularity. In an information retrieval application, we show that the supertag based system performs at higher levels of precision compared to a system based on part-of-speech tags. In an information extraction task, supertags are used in specifying extraction patterns. For language modeling applications, we view supertags as syntactically motivated class labels in a class-based language model. The distinction between recursive and non-recursive supertags is exploited in a sentence simplification application

    Knowledge Expansion of a Statistical Machine Translation System using Morphological Resources

    Get PDF
    Translation capability of a Phrase-Based Statistical Machine Translation (PBSMT) system mostly depends on parallel data and phrases that are not present in the training data are not correctly translated. This paper describes a method that efficiently expands the existing knowledge of a PBSMT system without adding more parallel data but using external morphological resources. A set of new phrase associations is added to translation and reordering models; each of them corresponds to a morphological variation of the source/target/both phrases of an existing association. New associations are generated using a string similarity score based on morphosyntactic information. We tested our approach on En-Fr and Fr-En translations and results showed improvements of the performance in terms of automatic scores (BLEU and Meteor) and reduction of out-of-vocabulary (OOV) words. We believe that our knowledge expansion framework is generic and could be used to add different types of information to the model.JRC.G.2-Global security and crisis managemen

    Computational principles for an autonomous active vision system

    Full text link
    Vision research has uncovered computational principles that generalize across species and brain area. However, these biological mechanisms are not frequently implemented in computer vision algorithms. In this thesis, models suitable for application in computer vision were developed to address the benefits of two biologically-inspired computational principles: multi-scale sampling and active, space-variant, vision. The first model investigated the role of multi-scale sampling in motion integration. It is known that receptive fields of different spatial and temporal scales exist in the visual cortex; however, models addressing how this basic principle is exploited by species are sparse and do not adequately explain the data. The developed model showed that the solution to a classical problem in motion integration, the aperture problem, can be reframed as an emergent property of multi-scale sampling facilitated by fast, parallel, bi-directional connections at different spatial resolutions. Humans and most other mammals actively move their eyes to sample a scene (active vision); moreover, the resolution of detail in this sampling process is not uniform across spatial locations (space-variant). It is known that these eye-movements are not simply guided by image saliency, but are also influenced by factors such as spatial attention, scene layout, and task-relevance. However, it is seldom questioned how previous eye movements shape how one learns and recognizes an object in a continuously-learning system. To explore this question, a model (CogEye) was developed that integrates active, space-variant sampling with eye-movement selection (the where visual stream), and object recognition (the what visual stream). The model hypothesizes that a signal from the recognition system helps the where stream select fixation locations that best disambiguate object identity between competing alternatives. The third study used eye-tracking coupled with an object disambiguation psychophysics experiment to validate the second model, CogEye. While humans outperformed the model in recognition accuracy, when the model used information from the recognition pathway to help select future fixations, it was more similar to human eye movement patterns than when the model relied on image saliency alone. Taken together these results show that computational principles in the mammalian visual system can be used to improve computer vision models
    • …
    corecore