37,612 research outputs found

    Towards Graph Representation Learning in Emergent Communication

    Get PDF
    Recent findings in neuroscience suggest that the human brain represents information in a geometric structure (for instance, through conceptual spaces). In order to communicate, we flatten the complex representation of entities and their attributes into a single word or a sentence. In this paper we use graph convolutional networks to support the evolution of language and cooperation in multi-agent systems. Motivated by an image-based referential game, we propose a graph referential game with varying degrees of complexity, and we provide strong baseline models that exhibit desirable properties in terms of language emergence and cooperation. We show that the emerged communication protocol is robust, that the agents uncover the true factors of variation in the game, and that they learn to generalize beyond the samples encountered during training

    Symbol Emergence in Robotics: A Survey

    Full text link
    Humans can learn the use of language through physical interaction with their environment and semiotic communication with other people. It is very important to obtain a computational understanding of how humans can form a symbol system and obtain semiotic skills through their autonomous mental development. Recently, many studies have been conducted on the construction of robotic systems and machine-learning methods that can learn the use of language through embodied multimodal interaction with their environment and other systems. Understanding human social interactions and developing a robot that can smoothly communicate with human users in the long term, requires an understanding of the dynamics of symbol systems and is crucially important. The embodied cognition and social interaction of participants gradually change a symbol system in a constructive manner. In this paper, we introduce a field of research called symbol emergence in robotics (SER). SER is a constructive approach towards an emergent symbol system. The emergent symbol system is socially self-organized through both semiotic communications and physical interactions with autonomous cognitive developmental agents, i.e., humans and developmental robots. Specifically, we describe some state-of-art research topics concerning SER, e.g., multimodal categorization, word discovery, and a double articulation analysis, that enable a robot to obtain words and their embodied meanings from raw sensory--motor information, including visual information, haptic information, auditory information, and acoustic speech signals, in a totally unsupervised manner. Finally, we suggest future directions of research in SER.Comment: submitted to Advanced Robotic

    Complex Networks from Classical to Quantum

    Full text link
    Recent progress in applying complex network theory to problems in quantum information has resulted in a beneficial crossover. Complex network methods have successfully been applied to transport and entanglement models while information physics is setting the stage for a theory of complex systems with quantum information-inspired methods. Novel quantum induced effects have been predicted in random graphs---where edges represent entangled links---and quantum computer algorithms have been proposed to offer enhancement for several network problems. Here we review the results at the cutting edge, pinpointing the similarities and the differences found at the intersection of these two fields.Comment: 12 pages, 4 figures, REVTeX 4-1, accepted versio

    Proceedings of the ECCS 2005 satellite workshop: embracing complexity in design - Paris 17 November 2005

    Get PDF
    Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr). Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr)

    The Emergence of Symbol-Based Communication in a Complex System of Artificial Creatures

    Get PDF
    We present here a digital scenario to simulate the emergence of self-organized symbol-based communication among artificial creatures inhabiting a virtual world of predatory events. In order to design the environment and creatures, we seek theoretical and empirical constraints from C.S.Peirce Semiotics and an ethological case study of communication among animals. Our results show that the creatures, assuming the role of sign users and learners, behave collectively as a complex system, where self-organization of communicative interactions plays a major role in the emergence of symbol-based communication. We also strive for a careful use of the theoretical concepts involved, including the concepts of symbol, communication, and emergence, and we use a multi-level model as a basis for the interpretation of inter-level relationships in the semiotic processes we are studying

    Collaborative Creation of Teaching-Learning Sequences and an Atlas of Knowledge

    Get PDF
    The article is about a new online resource, a collaborative portal for teachers, which publishes a network of prerequisites for teaching/learning any concept or an activity. A simple and effective method of collaboratively constructing teaching­-learning sequences is presented. The special emergent properties of the dependency network and their didactic and epistemic implications are pointed. The article ends with an appeal to the global teaching community to contribute prerequisites of any subject to complete the global roadmap for an altas being built on similar lines as Wikipedia. The portal is launched and waiting for community participation at http://www.gnowledge.org.\u

    Modelling Socially Intelligent Agents

    Get PDF
    The perspective of modelling agents rather than using them for a specificed purpose entails a difference in approach. In particular an emphasis on veracity as opposed to efficiency. An approach using evolving populations of mental models is described that goes some way to meet these concerns. It is then argued that social intelligence is not merely intelligence plus interaction but should allow for individual relationships to develop between agents. This means that, at least, agents must be able to distinguish, identify, model and address other agents, either individually or in groups. In other words that purely homogeneous interaction is insufficient. Two example models are described that illustrate these concerns, the second in detail where agents act and communicate socially, where this is determined by the evolution of their mental models. Finally some problems that arise in the interpretation of such simulations is discussed
    • 

    corecore