19,276 research outputs found

    Towards Gaussian Bayesian network fusion

    Get PDF
    Data sets are growing in complexity thanks to the increasing facilities we have nowadays to both generate and store data. This poses many challenges to machine learning that are leading to the proposal of new methods and paradigms, in order to be able to deal with what is nowadays referred to as Big Data. In this paper we propose a method for the aggregation of different Bayesian network structures that have been learned from separate data sets, as a first step towards mining data sets that need to be partitioned in an horizontal way, i.e. with respect to the instances, in order to be processed. Considerations that should be taken into account when dealing with this situation are discussed. Scalable learning of Bayesian networks is slowly emerging, and our method constitutes one of the first insights into Gaussian Bayesian network aggregation from different sources. Tested on synthetic data it obtains good results that surpass those from individual learning. Future research will be focused on expanding the method and testing more diverse data sets

    Distributed Bayesian Filtering using Logarithmic Opinion Pool for Dynamic Sensor Networks

    Get PDF
    The discrete-time Distributed Bayesian Filtering (DBF) algorithm is presented for the problem of tracking a target dynamic model using a time-varying network of heterogeneous sensing agents. In the DBF algorithm, the sensing agents combine their normalized likelihood functions in a distributed manner using the logarithmic opinion pool and the dynamic average consensus algorithm. We show that each agent's estimated likelihood function globally exponentially converges to an error ball centered on the joint likelihood function of the centralized multi-sensor Bayesian filtering algorithm. We rigorously characterize the convergence, stability, and robustness properties of the DBF algorithm. Moreover, we provide an explicit bound on the time step size of the DBF algorithm that depends on the time-scale of the target dynamics, the desired convergence error bound, and the modeling and communication error bounds. Furthermore, the DBF algorithm for linear-Gaussian models is cast into a modified form of the Kalman information filter. The performance and robust properties of the DBF algorithm are validated using numerical simulations
    • …
    corecore