7 research outputs found

    Quality-Aware Prototype Memory for Face Representation Learning

    Full text link
    Prototype Memory is a powerful model for face representation learning. It enables the training of face recognition models using datasets of any size, with on-the-fly generation of prototypes (classifier weights) and efficient ways of their utilization. Prototype Memory demonstrated strong results in many face recognition benchmarks. However, the algorithm of prototype generation, used in it, is prone to the problems of imperfectly calculated prototypes in case of low-quality or poorly recognizable faces in the images, selected for the prototype creation. All images of the same person, presented in the mini-batch, used with equal weights, and the resulting averaged prototype could be contaminated with imperfect embeddings of such face images. It can lead to misdirected training signals and impair the performance of the trained face recognition models. In this paper, we propose a simple and effective way to improve Prototype Memory with quality-aware prototype generation. Quality-Aware Prototype Memory uses different weights for images of different quality in the process of prototype generation. With this improvement, prototypes get more valuable information from high-quality images and less hurt by low-quality ones. We propose and compare several methods of quality estimation and usage, perform extensive experiments on the different face recognition benchmarks and demonstrate the advantages of the proposed model compared to the basic version of Prototype Memory.Comment: Preprin

    Towards Large-scale Masked Face Recognition

    Full text link
    During the COVID-19 coronavirus epidemic, almost everyone is wearing masks, which poses a huge challenge for deep learning-based face recognition algorithms. In this paper, we will present our \textbf{championship} solutions in ICCV MFR WebFace260M and InsightFace unconstrained tracks. We will focus on four challenges in large-scale masked face recognition, i.e., super-large scale training, data noise handling, masked and non-masked face recognition accuracy balancing, and how to design inference-friendly model architecture. We hope that the discussion on these four aspects can guide future research towards more robust masked face recognition systems.Comment: the top1 solution for ICCV2021-MFR challeng

    Decoupled DETR: Spatially Disentangling Localization and Classification for Improved End-to-End Object Detection

    Full text link
    The introduction of DETR represents a new paradigm for object detection. However, its decoder conducts classification and box localization using shared queries and cross-attention layers, leading to suboptimal results. We observe that different regions of interest in the visual feature map are suitable for performing query classification and box localization tasks, even for the same object. Salient regions provide vital information for classification, while the boundaries around them are more favorable for box regression. Unfortunately, such spatial misalignment between these two tasks greatly hinders DETR's training. Therefore, in this work, we focus on decoupling localization and classification tasks in DETR. To achieve this, we introduce a new design scheme called spatially decoupled DETR (SD-DETR), which includes a task-aware query generation module and a disentangled feature learning process. We elaborately design the task-aware query initialization process and divide the cross-attention block in the decoder to allow the task-aware queries to match different visual regions. Meanwhile, we also observe that the prediction misalignment problem for high classification confidence and precise localization exists, so we propose an alignment loss to further guide the spatially decoupled DETR training. Through extensive experiments, we demonstrate that our approach achieves a significant improvement in MSCOCO datasets compared to previous work. For instance, we improve the performance of Conditional DETR by 4.5 AP. By spatially disentangling the two tasks, our method overcomes the misalignment problem and greatly improves the performance of DETR for object detection.Comment: accepted by ICCV202

    Face.evoLVe: A High-Performance Face Recognition Library

    Full text link
    In this paper, we develop face.evoLVe -- a comprehensive library that collects and implements a wide range of popular deep learning-based methods for face recognition. First of all, face.evoLVe is composed of key components that cover the full process of face analytics, including face alignment, data processing, various backbones, losses, and alternatives with bags of tricks for improving performance. Later, face.evoLVe supports multi-GPU training on top of different deep learning platforms, such as PyTorch and PaddlePaddle, which facilitates researchers to work on both large-scale datasets with millions of images and low-shot counterparts with limited well-annotated data. More importantly, along with face.evoLVe, images before & after alignment in the common benchmark datasets are released with source codes and trained models provided. All these efforts lower the technical burdens in reproducing the existing methods for comparison, while users of our library could focus on developing advanced approaches more efficiently. Last but not least, face.evoLVe is well designed and vibrantly evolving, so that new face recognition approaches can be easily plugged into our framework. Note that we have used face.evoLVe to participate in a number of face recognition competitions and secured the first place. The version that supports PyTorch is publicly available at https://github.com/ZhaoJ9014/face.evoLVe.PyTorch and the PaddlePaddle version is available at https://github.com/ZhaoJ9014/face.evoLVe.PyTorch/tree/master/paddle. Face.evoLVe has been widely used for face analytics, receiving 2.4K stars and 622 forks.Comment: A short verson is accepted by NeuroComputing (https://www.sciencedirect.com/science/article/pii/S0925231222005057?via%3Dihub). Primary corresponding author is Dr. Jian Zha

    A Survey of Face Recognition

    Full text link
    Recent years witnessed the breakthrough of face recognition with deep convolutional neural networks. Dozens of papers in the field of FR are published every year. Some of them were applied in the industrial community and played an important role in human life such as device unlock, mobile payment, and so on. This paper provides an introduction to face recognition, including its history, pipeline, algorithms based on conventional manually designed features or deep learning, mainstream training, evaluation datasets, and related applications. We have analyzed and compared state-of-the-art works as many as possible, and also carefully designed a set of experiments to find the effect of backbone size and data distribution. This survey is a material of the tutorial named The Practical Face Recognition Technology in the Industrial World in the FG2023
    corecore