25,369 research outputs found

    Introducing Competition to Boost the Transferability of Targeted Adversarial Examples through Clean Feature Mixup

    Full text link
    Deep neural networks are widely known to be susceptible to adversarial examples, which can cause incorrect predictions through subtle input modifications. These adversarial examples tend to be transferable between models, but targeted attacks still have lower attack success rates due to significant variations in decision boundaries. To enhance the transferability of targeted adversarial examples, we propose introducing competition into the optimization process. Our idea is to craft adversarial perturbations in the presence of two new types of competitor noises: adversarial perturbations towards different target classes and friendly perturbations towards the correct class. With these competitors, even if an adversarial example deceives a network to extract specific features leading to the target class, this disturbance can be suppressed by other competitors. Therefore, within this competition, adversarial examples should take different attack strategies by leveraging more diverse features to overwhelm their interference, leading to improving their transferability to different models. Considering the computational complexity, we efficiently simulate various interference from these two types of competitors in feature space by randomly mixing up stored clean features in the model inference and named this method Clean Feature Mixup (CFM). Our extensive experimental results on the ImageNet-Compatible and CIFAR-10 datasets show that the proposed method outperforms the existing baselines with a clear margin. Our code is available at https://github.com/dreamflake/CFM.Comment: CVPR 2023 camera-read

    On Adversarial Examples and Stealth Attacks in Artificial Intelligence Systems

    Full text link
    In this work we present a formal theoretical framework for assessing and analyzing two classes of malevolent action towards generic Artificial Intelligence (AI) systems. Our results apply to general multi-class classifiers that map from an input space into a decision space, including artificial neural networks used in deep learning applications. Two classes of attacks are considered. The first class involves adversarial examples and concerns the introduction of small perturbations of the input data that cause misclassification. The second class, introduced here for the first time and named stealth attacks, involves small perturbations to the AI system itself. Here the perturbed system produces whatever output is desired by the attacker on a specific small data set, perhaps even a single input, but performs as normal on a validation set (which is unknown to the attacker). We show that in both cases, i.e., in the case of an attack based on adversarial examples and in the case of a stealth attack, the dimensionality of the AI's decision-making space is a major contributor to the AI's susceptibility. For attacks based on adversarial examples, a second crucial parameter is the absence of local concentrations in the data probability distribution, a property known as Smeared Absolute Continuity. According to our findings, robustness to adversarial examples requires either (a) the data distributions in the AI's feature space to have concentrated probability density functions or (b) the dimensionality of the AI's decision variables to be sufficiently small. We also show how to construct stealth attacks on high-dimensional AI systems that are hard to spot unless the validation set is made exponentially large

    The Odds are Odd: A Statistical Test for Detecting Adversarial Examples

    Full text link
    We investigate conditions under which test statistics exist that can reliably detect examples, which have been adversarially manipulated in a white-box attack. These statistics can be easily computed and calibrated by randomly corrupting inputs. They exploit certain anomalies that adversarial attacks introduce, in particular if they follow the paradigm of choosing perturbations optimally under p-norm constraints. Access to the log-odds is the only requirement to defend models. We justify our approach empirically, but also provide conditions under which detectability via the suggested test statistics is guaranteed to be effective. In our experiments, we show that it is even possible to correct test time predictions for adversarial attacks with high accuracy
    • …
    corecore