25 research outputs found

    Towards Interpretable Deep Learning Models for Knowledge Tracing

    Full text link
    As an important technique for modeling the knowledge states of learners, the traditional knowledge tracing (KT) models have been widely used to support intelligent tutoring systems and MOOC platforms. Driven by the fast advancements of deep learning techniques, deep neural network has been recently adopted to design new KT models for achieving better prediction performance. However, the lack of interpretability of these models has painfully impeded their practical applications, as their outputs and working mechanisms suffer from the intransparent decision process and complex inner structures. We thus propose to adopt the post-hoc method to tackle the interpretability issue for deep learning based knowledge tracing (DLKT) models. Specifically, we focus on applying the layer-wise relevance propagation (LRP) method to interpret RNN-based DLKT model by backpropagating the relevance from the model's output layer to its input layer. The experiment results show the feasibility using the LRP method for interpreting the DLKT model's predictions, and partially validate the computed relevance scores from both question level and concept level. We believe it can be a solid step towards fully interpreting the DLKT models and promote their practical applications in the education domain

    Quantifying Layerwise Information Discarding of Neural Networks

    Full text link
    This paper presents a method to explain how input information is discarded through intermediate layers of a neural network during the forward propagation, in order to quantify and diagnose knowledge representations of pre-trained deep neural networks. We define two types of entropy-based metrics, i.e., the strict information discarding and the reconstruction uncertainty, which measure input information of a specific layer from two perspectives. We develop a method to enable efficient computation of such entropy-based metrics. Our method can be broadly applied to various neural networks and enable comprehensive comparisons between different layers of different networks. Preliminary experiments have shown the effectiveness of our metrics in analyzing benchmark networks and explaining existing deep-learning techniques
    corecore