3 research outputs found

    Towards Evolutional Compression

    Full text link
    Compressing convolutional neural networks (CNNs) is essential for transferring the success of CNNs to a wide variety of applications to mobile devices. In contrast to directly recognizing subtle weights or filters as redundant in a given CNN, this paper presents an evolutionary method to automatically eliminate redundant convolution filters. We represent each compressed network as a binary individual of specific fitness. Then, the population is upgraded at each evolutionary iteration using genetic operations. As a result, an extremely compact CNN is generated using the fittest individual. In this approach, either large or small convolution filters can be redundant, and filters in the compressed network are more distinct. In addition, since the number of filters in each convolutional layer is reduced, the number of filter channels and the size of feature maps are also decreased, naturally improving both the compression and speed-up ratios. Experiments on benchmark deep CNN models suggest the superiority of the proposed algorithm over the state-of-the-art compression methods

    Evolutionary Generative Adversarial Networks

    Full text link
    Generative adversarial networks (GAN) have been effective for learning generative models for real-world data. However, existing GANs (GAN and its variants) tend to suffer from training problems such as instability and mode collapse. In this paper, we propose a novel GAN framework called evolutionary generative adversarial networks (E-GAN) for stable GAN training and improved generative performance. Unlike existing GANs, which employ a pre-defined adversarial objective function alternately training a generator and a discriminator, we utilize different adversarial training objectives as mutation operations and evolve a population of generators to adapt to the environment (i.e., the discriminator). We also utilize an evaluation mechanism to measure the quality and diversity of generated samples, such that only well-performing generator(s) are preserved and used for further training. In this way, E-GAN overcomes the limitations of an individual adversarial training objective and always preserves the best offspring, contributing to progress in and the success of GANs. Experiments on several datasets demonstrate that E-GAN achieves convincing generative performance and reduces the training problems inherent in existing GANs.Comment: 14 pages, 8 figure

    Balanced Binary Neural Networks with Gated Residual

    Full text link
    Binary neural networks have attracted numerous attention in recent years. However, mainly due to the information loss stemming from the biased binarization, how to preserve the accuracy of networks still remains a critical issue. In this paper, we attempt to maintain the information propagated in the forward process and propose a Balanced Binary Neural Networks with Gated Residual (BBG for short). First, a weight balanced binarization is introduced to maximize information entropy of binary weights, and thus the informative binary weights can capture more information contained in the activations. Second, for binary activations, a gated residual is further appended to compensate their information loss during the forward process, with a slight overhead. Both techniques can be wrapped as a generic network module that supports various network architectures for different tasks including classification and detection. We evaluate our BBG on image classification tasks over CIFAR-10/100 and ImageNet and on detection task over Pascal VOC. The experimental results show that BBG-Net performs remarkably well across various network architectures such as VGG, ResNet and SSD with the superior performance over state-of-the-art methods in terms of memory consumption, inference speed and accuracy.Comment: Accepted by ICASSP202
    corecore