3 research outputs found

    Measurement of the N170 during facial neuromuscular electrical stimulation (fNMES).

    Get PDF
    Background Studies on facial feedback effects typically employ props or posed facial expressions, which often lack temporal precision and muscle specificity. New method Facial Neuromuscular Electrical Stimulation (fNMES) allows for a controlled influence of contractions of facial muscles, and may be used to advance our understanding of facial feedback effects, especially when combined with Electroencephalography (EEG). However, electrical stimulation introduces significant interference that can mask underlying brain dynamics. Whether established signal processing methods can allow for a reduction of said interference whilst retaining effects of interest, remains unexplored. Results We addressed these questions focusing on the classic N170 visual evoked potential, a face-sensitive brain component: 20 participants viewed images of houses, and of sad, happy, and neutral faces. On half of the trials, fNMES was delivered to bilateral lower-face muscles during the presentation of visual stimuli. A larger N170 amplitude was found for faces relative to houses. Interestingly, this was the case both without and during fNMES, regardless of whether the fNMES artefact was removed or not. Moreover, sad facial expressions elicited a larger N170 amplitude relative to neutral facial expressions, both with and without fNMES. Comparison with existing methods fNMES offers a more precise way of manipulating proprioceptive feedback from facial muscles, which affords greater diversity in experimental design for studies on facial feedback effects. Conclusions We show that the combining of fNMES and EEG can be achieved and may serve as a powerful means of exploring the impact of controlled proprioceptive inputs on various types of cognitive processing

    Application of facial neuromuscular electrical stimulation (fNMES) in psychophysiological research: Practical recommendations based on a systematic review of the literature.

    Get PDF
    Facial neuromuscular electrical stimulation (fNMES), which allows for the non-invasive and physiologically sound activation of facial muscles, has great potential for investigating fundamental questions in psychology and neuroscience, such as the role of proprioceptive facial feedback in emotion induction and emotion recognition, and may serve for clinical applications, such as alleviating symptoms of depression. However, despite illustrious origins in the 19th-century work of Duchenne de Boulogne, the practical application of fNMES remains largely unknown to today's researchers in psychology. In addition, published studies vary dramatically in the stimulation parameters used, such as stimulation frequency, amplitude, duration, and electrode size, and in the way they reported them. Because fNMES parameters impact the comfort and safety of volunteers, as well as its physiological (and psychological) effects, it is of paramount importance to establish recommendations of good practice and to ensure studies can be better compared and integrated. Here, we provide an introduction to fNMES, systematically review the existing literature focusing on the stimulation parameters used, and offer recommendations on how to safely and reliably deliver fNMES and on how to report the fNMES parameters to allow better cross-study comparison. In addition, we provide a free webpage, to easily visualise fNMES parameters and verify their safety based on current density. As an example of a potential application, we focus on the use of fNMES for the investigation of the facial feedback hypothesis

    A Spark Of Emotion: The Impact of Electrical Facial Muscle Activation on Emotional State and Affective Processing

    Get PDF
    Facial feedback, which involves the brain receiving information about the activation of facial muscles, has the potential to influence our emotional states and judgments. The extent to which this applies is still a matter of debate, particularly considering a failed replication of a seminal study. One factor contributing to the lack of replication in facial feedback effects may be the imprecise manipulation of facial muscle activity in terms of both degree and timing. To overcome these limitations, this thesis proposes a non-invasive method for inducing precise facial muscle contractions, called facial neuromuscular electrical stimulation (fNMES). I begin by presenting a systematic literature review that lays the groundwork for standardising the use of fNMES in psychological research, by evaluating its application in existing studies. This review highlights two issues, the lack of use of fNMES in psychology research and the lack of parameter reporting. I provide practical recommendations for researchers interested in implementing fNMES. Subsequently, I conducted an online experiment to investigate participants' willingness to participate in fNMES research. This experiment revealed that concerns over potential burns and involuntary muscle movements are significant deterrents to participation. Understanding these anxieties is critical for participant management and expectation setting. Subsequently, two laboratory studies are presented that investigated the facial FFH using fNMES. The first study showed that feelings of happiness and sadness, and changes in peripheral physiology, can be induced by stimulating corresponding facial muscles with 5–seconds of fNMES. The second experiment showed that fNMES-induced smiling alters the perception of ambiguous facial emotions, creating a bias towards happiness, and alters neural correlates of face processing, as measured with event-related potentials (ERPs). In summary, the thesis presents promising results for testing the facial feedback hypothesis with fNMES and provides practical guidelines and recommendations for researchers interested in using fNMES for psychological research
    corecore