3 research outputs found

    Multifactorial Cellular Genetic Algorithm (MFCGA): Algorithmic Design, Performance Comparison and Genetic Transferability Analysis

    Full text link
    Multitasking optimization is an incipient research area which is lately gaining a notable research momentum. Unlike traditional optimization paradigm that focuses on solving a single task at a time, multitasking addresses how multiple optimization problems can be tackled simultaneously by performing a single search process. The main objective to achieve this goal efficiently is to exploit synergies between the problems (tasks) to be optimized, helping each other via knowledge transfer (thereby being referred to as Transfer Optimization). Furthermore, the equally recent concept of Evolutionary Multitasking (EM) refers to multitasking environments adopting concepts from Evolutionary Computation as their inspiration for the simultaneous solving of the problems under consideration. As such, EM approaches such as the Multifactorial Evolutionary Algorithm (MFEA) has shown a remarkable success when dealing with multiple discrete, continuous, single-, and/or multi-objective optimization problems. In this work we propose a novel algorithmic scheme for Multifactorial Optimization scenarios - the Multifactorial Cellular Genetic Algorithm (MFCGA) - that hinges on concepts from Cellular Automata to implement mechanisms for exchanging knowledge among problems. We conduct an extensive performance analysis of the proposed MFCGA and compare it to the canonical MFEA under the same algorithmic conditions and over 15 different multitasking setups (encompassing different reference instances of the discrete Traveling Salesman Problem). A further contribution of this analysis beyond performance benchmarking is a quantitative examination of the genetic transferability among the problem instances, eliciting an empirical demonstration of the synergies emerged between the different optimization tasks along the MFCGA search process.Comment: Accepted for its presentation at WCCI 202

    A Two stage Adaptive Knowledge Transfer Evolutionary Multi-tasking Based on Population Distribution for Multi/Many-Objective Optimization

    Full text link
    Multi-tasking optimization can usually achieve better performance than traditional single-tasking optimization through knowledge transfer between tasks. However, current multi-tasking optimization algorithms have some deficiencies. For high similarity problems, the knowledge that can accelerate the convergence rate of tasks has not been fully taken advantages of. For low similarity problems, the probability of generating negative transfer is high, which may result in optimization performance degradation. In addition, some knowledge transfer methods proposed previously do not fully consider how to deal with the situation in which the population falls into local optimum. To solve these issues, a two-stage adaptive knowledge transfer evolutionary multi-tasking optimization algorithm based on population distribution, labeled as EMT-PD, is proposed. EMT-PD can accelerate and improve the convergence performance of tasks based on the knowledge extracted from the probability model that reflects the search trend of the whole population. At the first transfer stage, an adaptive weight is used to adjust the step size of individual's search, which can reduce the impact of negative transfer. At the second stage of knowledge transfer, the individual's search range is further adjusted dynamically, which can improve the diversity of population and be beneficial for jumping out of local optimum. Experimental results on multi-tasking multi-objective optimization test suites show that EMT-PD is superior to other six state-of-the-art evolutionary multi/single-tasking algorithms. To further investigate the effectiveness of EMT-PD on many-objective optimization problems, a multi-tasking many-objective test suite is also designed in this paper. The experimental results on the new test suite also demonstrate the competitiveness of EMT-PD.Comment: 14 pages, 8 figures, 7 tables, 61 reference

    AT-MFCGA: An Adaptive Transfer-guided Multifactorial Cellular Genetic Algorithm for Evolutionary Multitasking

    Full text link
    Transfer Optimization is an incipient research area dedicated to the simultaneous solving of multiple optimization tasks. Among the different approaches that can address this problem effectively, Evolutionary Multitasking resorts to concepts from Evolutionary Computation to solve multiple problems within a single search process. In this paper we introduce a novel adaptive metaheuristic algorithm for dealing with Evolutionary Multitasking environments coined as Adaptive Transfer-guided Multifactorial Cellular Genetic Algorithm (AT-MFCGA). AT-MFCGA relies on cellular automata to implement mechanisms for exchanging knowledge among the optimization problems under consideration. Furthermore, our approach is able to explain by itself the synergies among tasks that were encountered and exploited during the search, which helps understand interactions between related optimization tasks. A comprehensive experimental setup is designed for assessing and comparing the performance of AT-MFCGA to that of other renowned evolutionary multitasking alternatives (MFEA and MFEA-II). Experiments comprise 11 multitasking scenarios composed by 20 instances of 4 combinatorial optimization problems, yielding the largest discrete multitasking environment solved to date. Results are conclusive in regards to the superior quality of solutions provided by AT-MFCGA with respect to the rest of methods, which are complemented by a quantitative examination of the genetic transferability among tasks along the search process.Comment: 30 pages, 2 figures, under review for its consideration in Information Sciences journa
    corecore