4,397 research outputs found

    Entity Personalized Talent Search Models with Tree Interaction Features

    Full text link
    Talent Search systems aim to recommend potential candidates who are a good match to the hiring needs of a recruiter expressed in terms of the recruiter's search query or job posting. Past work in this domain has focused on linear and nonlinear models which lack preference personalization in the user-level due to being trained only with globally collected recruiter activity data. In this paper, we propose an entity-personalized Talent Search model which utilizes a combination of generalized linear mixed (GLMix) models and gradient boosted decision tree (GBDT) models, and provides personalized talent recommendations using nonlinear tree interaction features generated by the GBDT. We also present the offline and online system architecture for the productionization of this hybrid model approach in our Talent Search systems. Finally, we provide offline and online experiment results benchmarking our entity-personalized model with tree interaction features, which demonstrate significant improvements in our precision metrics compared to globally trained non-personalized models.Comment: This paper has been accepted for publication at ACM WWW 201

    Salience and Market-aware Skill Extraction for Job Targeting

    Full text link
    At LinkedIn, we want to create economic opportunity for everyone in the global workforce. To make this happen, LinkedIn offers a reactive Job Search system, and a proactive Jobs You May Be Interested In (JYMBII) system to match the best candidates with their dream jobs. One of the most challenging tasks for developing these systems is to properly extract important skill entities from job postings and then target members with matched attributes. In this work, we show that the commonly used text-based \emph{salience and market-agnostic} skill extraction approach is sub-optimal because it only considers skill mention and ignores the salient level of a skill and its market dynamics, i.e., the market supply and demand influence on the importance of skills. To address the above drawbacks, we present \model, our deployed \emph{salience and market-aware} skill extraction system. The proposed \model ~shows promising results in improving the online performance of job recommendation (JYMBII) (+1.92%+1.92\% job apply) and skill suggestions for job posters (−37%-37\% suggestion rejection rate). Lastly, we present case studies to show interesting insights that contrast traditional skill recognition method and the proposed \model~from occupation, industry, country, and individual skill levels. Based on the above promising results, we deployed the \model ~online to extract job targeting skills for all 2020M job postings served at LinkedIn.Comment: 9 pages, to appear in KDD202

    From Query-By-Keyword to Query-By-Example: LinkedIn Talent Search Approach

    Full text link
    One key challenge in talent search is to translate complex criteria of a hiring position into a search query, while it is relatively easy for a searcher to list examples of suitable candidates for a given position. To improve search efficiency, we propose the next generation of talent search at LinkedIn, also referred to as Search By Ideal Candidates. In this system, a searcher provides one or several ideal candidates as the input to hire for a given position. The system then generates a query based on the ideal candidates and uses it to retrieve and rank results. Shifting from the traditional Query-By-Keyword to this new Query-By-Example system poses a number of challenges: How to generate a query that best describes the candidates? When moving to a completely different paradigm, how does one leverage previous product logs to learn ranking models and/or evaluate the new system with no existing usage logs? Finally, given the different nature between the two search paradigms, the ranking features typically used for Query-By-Keyword systems might not be optimal for Query-By-Example. This paper describes our approach to solving these challenges. We present experimental results confirming the effectiveness of the proposed solution, particularly on query building and search ranking tasks. As of writing this paper, the new system has been available to all LinkedIn members

    The Looming Threat of Fake and LLM-generated LinkedIn Profiles: Challenges and Opportunities for Detection and Prevention

    Full text link
    In this paper, we present a novel method for detecting fake and Large Language Model (LLM)-generated profiles in the LinkedIn Online Social Network immediately upon registration and before establishing connections. Early fake profile identification is crucial to maintaining the platform's integrity since it prevents imposters from acquiring the private and sensitive information of legitimate users and from gaining an opportunity to increase their credibility for future phishing and scamming activities. This work uses textual information provided in LinkedIn profiles and introduces the Section and Subsection Tag Embedding (SSTE) method to enhance the discriminative characteristics of these data for distinguishing between legitimate profiles and those created by imposters manually or by using an LLM. Additionally, the dearth of a large publicly available LinkedIn dataset motivated us to collect 3600 LinkedIn profiles for our research. We will release our dataset publicly for research purposes. This is, to the best of our knowledge, the first large publicly available LinkedIn dataset for fake LinkedIn account detection. Within our paradigm, we assess static and contextualized word embeddings, including GloVe, Flair, BERT, and RoBERTa. We show that the suggested method can distinguish between legitimate and fake profiles with an accuracy of about 95% across all word embeddings. In addition, we show that SSTE has a promising accuracy for identifying LLM-generated profiles, despite the fact that no LLM-generated profiles were employed during the training phase, and can achieve an accuracy of approximately 90% when only 20 LLM-generated profiles are added to the training set. It is a significant finding since the proliferation of several LLMs in the near future makes it extremely challenging to design a single system that can identify profiles created with various LLMs.Comment: 33rd ACM Conference on Hypertext and Social Media (HT '23

    A Comprehensive Survey of Artificial Intelligence Techniques for Talent Analytics

    Full text link
    In today's competitive and fast-evolving business environment, it is a critical time for organizations to rethink how to make talent-related decisions in a quantitative manner. Indeed, the recent development of Big Data and Artificial Intelligence (AI) techniques have revolutionized human resource management. The availability of large-scale talent and management-related data provides unparalleled opportunities for business leaders to comprehend organizational behaviors and gain tangible knowledge from a data science perspective, which in turn delivers intelligence for real-time decision-making and effective talent management at work for their organizations. In the last decade, talent analytics has emerged as a promising field in applied data science for human resource management, garnering significant attention from AI communities and inspiring numerous research efforts. To this end, we present an up-to-date and comprehensive survey on AI technologies used for talent analytics in the field of human resource management. Specifically, we first provide the background knowledge of talent analytics and categorize various pertinent data. Subsequently, we offer a comprehensive taxonomy of relevant research efforts, categorized based on three distinct application-driven scenarios: talent management, organization management, and labor market analysis. In conclusion, we summarize the open challenges and potential prospects for future research directions in the domain of AI-driven talent analytics.Comment: 30 pages, 15 figure

    Disentangling and Operationalizing AI Fairness at LinkedIn

    Full text link
    Operationalizing AI fairness at LinkedIn's scale is challenging not only because there are multiple mutually incompatible definitions of fairness but also because determining what is fair depends on the specifics and context of the product where AI is deployed. Moreover, AI practitioners need clarity on what fairness expectations need to be addressed at the AI level. In this paper, we present the evolving AI fairness framework used at LinkedIn to address these three challenges. The framework disentangles AI fairness by separating out equal treatment and equitable product expectations. Rather than imposing a trade-off between these two commonly opposing interpretations of fairness, the framework provides clear guidelines for operationalizing equal AI treatment complemented with a product equity strategy. This paper focuses on the equal AI treatment component of LinkedIn's AI fairness framework, shares the principles that support it, and illustrates their application through a case study. We hope this paper will encourage other big tech companies to join us in sharing their approach to operationalizing AI fairness at scale, so that together we can keep advancing this constantly evolving field
    • …
    corecore