5,261 research outputs found

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    GRASE: Granulometry Analysis with Semi Eager Classifier to Detect Malware

    Get PDF
    Technological advancement in communication leading to 5G, motivates everyone to get connected to the internet including ‘Devices’, a technology named Web of Things (WoT). The community benefits from this large-scale network which allows monitoring and controlling of physical devices. But many times, it costs the security as MALicious softWARE (MalWare) developers try to invade the network, as for them, these devices are like a ‘backdoor’ providing them easy ‘entry’. To stop invaders from entering the network, identifying malware and its variants is of great significance for cyberspace. Traditional methods of malware detection like static and dynamic ones, detect the malware but lack against new techniques used by malware developers like obfuscation, polymorphism and encryption. A machine learning approach to detect malware, where the classifier is trained with handcrafted features, is not potent against these techniques and asks for efforts to put in for the feature engineering. The paper proposes a malware classification using a visualization methodology wherein the disassembled malware code is transformed into grey images. It presents the efficacy of Granulometry texture analysis technique for improving malware classification. Furthermore, a Semi Eager (SemiE) classifier, which is a combination of eager learning and lazy learning technique, is used to get robust classification of malware families. The outcome of the experiment is promising since the proposed technique requires less training time to learn the semantics of higher-level malicious behaviours. Identifying the malware (testing phase) is also done faster. A benchmark database like malimg and Microsoft Malware Classification challenge (BIG-2015) has been utilized to analyse the performance of the system. An overall average classification accuracy of 99.03 and 99.11% is achieved, respectively

    V2VFormer: vehicle-to-vehicle cooperative perception with spatial-channel transformer

    Get PDF
    Collaborative perception aims for a holistic perceptive construction by leveraging complementary information from nearby connected automated vehicle (CAV), thereby endowing the broader probing scope. Nonetheless, how to aggregate individual observation reasonably remains an open problem. In this paper, we propose a novel vehicle-to-vehicle perception framework dubbed V2VFormer with Tr ansformer-based Co llaboration ( CoTr ). Specifically. it re-calibrates feature importance according to position correlation via Spatial-Aware Transformer ( SAT ), and then performs dynamic semantic interaction with Channel-Wise Transformer ( CWT ). Of note, CoTr is a light-weight and plug-in-play module that can be adapted seamlessly to the off-the-shelf 3D detectors with an acceptable computational overhead. Additionally, a large-scale cooperative perception dataset V2V-Set is further augmented with a variety of driving conditions, thereby providing extensive knowledge for model pretraining. Qualitative and quantitative experiments demonstrate our proposed V2VFormer achieves the state-of-the-art (SOTA) collaboration performance in both simulated and real-world scenarios, outperforming all counterparts by a substantial margin. We expect this would propel the progress of networked autonomous-driving research in the future

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Deep generative models for network data synthesis and monitoring

    Get PDF
    Measurement and monitoring are fundamental tasks in all networks, enabling the down-stream management and optimization of the network. Although networks inherently have abundant amounts of monitoring data, its access and effective measurement is another story. The challenges exist in many aspects. First, the inaccessibility of network monitoring data for external users, and it is hard to provide a high-fidelity dataset without leaking commercial sensitive information. Second, it could be very expensive to carry out effective data collection to cover a large-scale network system, considering the size of network growing, i.e., cell number of radio network and the number of flows in the Internet Service Provider (ISP) network. Third, it is difficult to ensure fidelity and efficiency simultaneously in network monitoring, as the available resources in the network element that can be applied to support the measurement function are too limited to implement sophisticated mechanisms. Finally, understanding and explaining the behavior of the network becomes challenging due to its size and complex structure. Various emerging optimization-based solutions (e.g., compressive sensing) or data-driven solutions (e.g. deep learning) have been proposed for the aforementioned challenges. However, the fidelity and efficiency of existing methods cannot yet meet the current network requirements. The contributions made in this thesis significantly advance the state of the art in the domain of network measurement and monitoring techniques. Overall, we leverage cutting-edge machine learning technology, deep generative modeling, throughout the entire thesis. First, we design and realize APPSHOT , an efficient city-scale network traffic sharing with a conditional generative model, which only requires open-source contextual data during inference (e.g., land use information and population distribution). Second, we develop an efficient drive testing system — GENDT, based on generative model, which combines graph neural networks, conditional generation, and quantified model uncertainty to enhance the efficiency of mobile drive testing. Third, we design and implement DISTILGAN, a high-fidelity, efficient, versatile, and real-time network telemetry system with latent GANs and spectral-temporal networks. Finally, we propose SPOTLIGHT , an accurate, explainable, and efficient anomaly detection system of the Open RAN (Radio Access Network) system. The lessons learned through this research are summarized, and interesting topics are discussed for future work in this domain. All proposed solutions have been evaluated with real-world datasets and applied to support different applications in real systems

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Multivariate Modeling of Quasar Variability with an Attention-based Variational Autoencoder

    Get PDF
    This thesis applied HeTVAE, an attention-based VAE neural network capable of multivariate modeling of time series, to a dataset of several thousand multi-band AGN light curves from ZTF and was one of the first attempts to use a neural network to harness the stochastic light curves in their multivariate form. Whereas standard models of AGN variability make prior assumptions, HeTVAE uses no prior knowledge and is able to learn the data distribution in a regularized latent space, reading semantic information via its up-to-date self-supervised training regimen. We have successfully created a dataset class for preprocessing the irregular multivariate time series and in order to interface with the quasi-off-the-shelf network more conveniently. Also, we have trained several different model iterations using one, two or all three of the filter dimensions from ZTF on Durham’s NCC compute cluster, while configuring useful hyper parameter choices to work robustly for the astronomical dataset. In the network's training, we employed the Adam optimizer with a reduce-on-plateau learning rate schedule and a KL-annealing schedule optimize the VAE’s performance. In experimenting, we show how the VAE has learned the data distribution of the light curves by generating simulated light curves and its interpretability by visualizing attention scores and by visualizing the way the light curves are distributed along the continuous latent space using PCA. We show it orders the light curves across a smooth gradient from those those that have both low amplitude short-term variation and high amplitude long-term variation, to those with little variability, to those with both short-term and long-term high-amplitude variation in the condensed space. We also use PCA to display a potential filtering algorithm that enables parsing through large datasets in an intuitive way and present some of the pitfalls of algorithmic bias in anomaly detection. Finally, we fine-tuned the structurally correct but imprecise multivariate interpolations output by HeTVAE to three objects to show how they could improve constraints on time-delay estimates in the context of reverberation mapping for the relatively poor-cadenced ZTF data. In short, HeTVAE's use cases are ranged and it is a step in the right direction as far as being able to help organize and process the millions of AGN light curves incoming from Vera C. Rubin Observatory’s Legacy Survey of Space and Time in their full 6 optical broadband filter multivariate form

    Applications of Machine Learning to the Monopole & Exotics Detector at the Large Hadron Collider

    Get PDF
    MoEDAL is the Monopole and Exotics Detector at the Large Hadron Collider. The Moedal Experiment uses Passive Nuclear Track Detector foils (NTDs) to look for magnetic monopoles, and other heavily ionising exotic particles at the Large Hadron Collider (LHC). Heavy particle radiation backgrounds at the Large Hadron Collider make image analysis of these NTD foils non-trivial compared to NTD image analysis under lower background conditions such as medical ion beam calibration or nuclear dosimetry. This thesis looks at multichannel and multidimensional Convolutional Neural Network (CNN) and Fully Convolutional Neural Network (FCN) based image recognition for identifying anomalous heavily ionising particle (HIP) etch pits within calibration NTD foils that have been exposed to both a calibration signal (heavy ion beam), and real LHC background exposure, serving as detector research and development for future MoEDAL NTD analyses. Image data was collected with Directed-Bright/Dark-Field illumination, parametrised at multiple off-axis illumination angles. Angular control of the light intensity distri- bution was achieved via a paired Fresnel lens and LED array. Information about the 3D structure of the etch pits is contained in these parametrised images which may as- sist in their identification and classification beyond what is possible in a simple 2D image. Convolutional Neural Network etch pit classifiers were trained using Xe, and Pb ion data with differing levels of LHC background exposure. An ensemble approach of combining classifiers trained on different objects, and data-channels is shown to improve classification performance. Transfer learning was used to generate Fully Convolutional Neural Networks for identifying HIP etch-pit candidates from wide area foil scan images. The performance of the FCN algorithm is evaluated using a novel MoEDAL R&D foil stack, in order to obtain blinded estimates of the signal acceptance and false prediction rate of an ML based NTD analysis. Additionally a method for pixel to pixel alignment of NTD foil scans is demonstrated that can be used for the training of U-Net FCN architectures

    Applications of Deep Learning Models in Financial Forecasting

    Get PDF
    In financial markets, deep learning techniques sparked a revolution, reshaping conventional approaches and amplifying predictive capabilities. This thesis explored the applications of deep learning models to unravel insights and methodologies aimed at advancing financial forecasting. The crux of the research problem lies in the applications of predictive models within financial domains, characterised by high volatility and uncertainty. This thesis investigated the application of advanced deep-learning methodologies in the context of financial forecasting, addressing the challenges posed by the dynamic nature of financial markets. These challenges were tackled by exploring a range of techniques, including convolutional neural networks (CNNs), long short-term memory networks (LSTMs), autoencoders (AEs), and variational autoencoders (VAEs), along with approaches such as encoding financial time series into images. Through analysis, methodologies such as transfer learning, convolutional neural networks, long short-term memory networks, generative modelling, and image encoding of time series data were examined. These methodologies collectively offered a comprehensive toolkit for extracting meaningful insights from financial data. The present work investigated the practicality of a deep learning CNN-LSTM model within the Directional Change framework to predict significant DC events—a task crucial for timely decisionmaking in financial markets. Furthermore, the potential of autoencoders and variational autoencoders to enhance financial forecasting accuracy and remove noise from financial time series data was explored. Leveraging their capacity within financial time series, these models offered promising avenues for improved data representation and subsequent forecasting. To further contribute to financial prediction capabilities, a deep multi-model was developed that harnessed the power of pre-trained computer vision models. This innovative approach aimed to predict the VVIX, utilising the cross-disciplinary synergy between computer vision and financial forecasting. By integrating knowledge from these domains, novel insights into the prediction of market volatility were provided
    • …
    corecore