356 research outputs found

    Certifiable Black-Box Attack: Ensuring Provably Successful Attack for Adversarial Examples

    Full text link
    Black-box adversarial attacks have shown strong potential to subvert machine learning models. Existing black-box adversarial attacks craft the adversarial examples by iteratively querying the target model and/or leveraging the transferability of a local surrogate model. Whether such attack can succeed remains unknown to the adversary when empirically designing the attack. In this paper, to our best knowledge, we take the first step to study a new paradigm of adversarial attacks -- certifiable black-box attack that can guarantee the attack success rate of the crafted adversarial examples. Specifically, we revise the randomized smoothing to establish novel theories for ensuring the attack success rate of the adversarial examples. To craft the adversarial examples with the certifiable attack success rate (CASR) guarantee, we design several novel techniques, including a randomized query method to query the target model, an initialization method with smoothed self-supervised perturbation to derive certifiable adversarial examples, and a geometric shifting method to reduce the perturbation size of the certifiable adversarial examples for better imperceptibility. We have comprehensively evaluated the performance of the certifiable black-box attack on CIFAR10 and ImageNet datasets against different levels of defenses. Both theoretical and experimental results have validated the effectiveness of the proposed certifiable attack

    Robust Recommender System: A Survey and Future Directions

    Full text link
    With the rapid growth of information, recommender systems have become integral for providing personalized suggestions and overcoming information overload. However, their practical deployment often encounters "dirty" data, where noise or malicious information can lead to abnormal recommendations. Research on improving recommender systems' robustness against such dirty data has thus gained significant attention. This survey provides a comprehensive review of recent work on recommender systems' robustness. We first present a taxonomy to organize current techniques for withstanding malicious attacks and natural noise. We then explore state-of-the-art methods in each category, including fraudster detection, adversarial training, certifiable robust training against malicious attacks, and regularization, purification, self-supervised learning against natural noise. Additionally, we summarize evaluation metrics and common datasets used to assess robustness. We discuss robustness across varying recommendation scenarios and its interplay with other properties like accuracy, interpretability, privacy, and fairness. Finally, we delve into open issues and future research directions in this emerging field. Our goal is to equip readers with a holistic understanding of robust recommender systems and spotlight pathways for future research and development

    Interpreting Adversarially Trained Convolutional Neural Networks

    Full text link
    We attempt to interpret how adversarially trained convolutional neural networks (AT-CNNs) recognize objects. We design systematic approaches to interpret AT-CNNs in both qualitative and quantitative ways and compare them with normally trained models. Surprisingly, we find that adversarial training alleviates the texture bias of standard CNNs when trained on object recognition tasks, and helps CNNs learn a more shape-biased representation. We validate our hypothesis from two aspects. First, we compare the salience maps of AT-CNNs and standard CNNs on clean images and images under different transformations. The comparison could visually show that the prediction of the two types of CNNs is sensitive to dramatically different types of features. Second, to achieve quantitative verification, we construct additional test datasets that destroy either textures or shapes, such as style-transferred version of clean data, saturated images and patch-shuffled ones, and then evaluate the classification accuracy of AT-CNNs and normal CNNs on these datasets. Our findings shed some light on why AT-CNNs are more robust than those normally trained ones and contribute to a better understanding of adversarial training over CNNs from an interpretation perspective.Comment: To apper in ICML1
    • …
    corecore