6,755 research outputs found

    Automated Test Input Generation for Android: Are We There Yet?

    Full text link
    Mobile applications, often simply called "apps", are increasingly widespread, and we use them daily to perform a number of activities. Like all software, apps must be adequately tested to gain confidence that they behave correctly. Therefore, in recent years, researchers and practitioners alike have begun to investigate ways to automate apps testing. In particular, because of Android's open source nature and its large share of the market, a great deal of research has been performed on input generation techniques for apps that run on the Android operating systems. At this point in time, there are in fact a number of such techniques in the literature, which differ in the way they generate inputs, the strategy they use to explore the behavior of the app under test, and the specific heuristics they use. To better understand the strengths and weaknesses of these existing approaches, and get general insight on ways they could be made more effective, in this paper we perform a thorough comparison of the main existing test input generation tools for Android. In our comparison, we evaluate the effectiveness of these tools, and their corresponding techniques, according to four metrics: code coverage, ability to detect faults, ability to work on multiple platforms, and ease of use. Our results provide a clear picture of the state of the art in input generation for Android apps and identify future research directions that, if suitably investigated, could lead to more effective and efficient testing tools for Android

    Scripted GUI Testing of Android Apps: A Study on Diffusion, Evolution and Fragility

    Full text link
    Background. Evidence suggests that mobile applications are not thoroughly tested as their desktop counterparts. In particular GUI testing is generally limited. Like web-based applications, mobile apps suffer from GUI test fragility, i.e. GUI test classes failing due to minor modifications in the GUI, without the application functionalities being altered. Aims. The objective of our study is to examine the diffusion of GUI testing on Android, and the amount of changes required to keep test classes up to date, and in particular the changes due to GUI test fragility. We define metrics to characterize the modifications and evolution of test classes and test methods, and proxies to estimate fragility-induced changes. Method. To perform our experiments, we selected six widely used open-source tools for scripted GUI testing of mobile applications previously described in the literature. We have mined the repositories on GitHub that used those tools, and computed our set of metrics. Results. We found that none of the considered GUI testing frameworks achieved a major diffusion among the open-source Android projects available on GitHub. For projects with GUI tests, we found that test suites have to be modified often, specifically 5\%-10\% of developers' modified LOCs belong to tests, and that a relevant portion (60\% on average) of such modifications are induced by fragility. Conclusions. Fragility of GUI test classes constitute a relevant concern, possibly being an obstacle for developers to adopt automated scripted GUI tests. This first evaluation and measure of fragility of Android scripted GUI testing can constitute a benchmark for developers, and the basis for the definition of a taxonomy of fragility causes, and actionable guidelines to mitigate the issue.Comment: PROMISE'17 Conference, Best Paper Awar

    ChimpCheck: Property-Based Randomized Test Generation for Interactive Apps

    Full text link
    We consider the problem of generating relevant execution traces to test rich interactive applications. Rich interactive applications, such as apps on mobile platforms, are complex stateful and often distributed systems where sufficiently exercising the app with user-interaction (UI) event sequences to expose defects is both hard and time-consuming. In particular, there is a fundamental tension between brute-force random UI exercising tools, which are fully-automated but offer low relevance, and UI test scripts, which are manual but offer high relevance. In this paper, we consider a middle way---enabling a seamless fusion of scripted and randomized UI testing. This fusion is prototyped in a testing tool called ChimpCheck for programming, generating, and executing property-based randomized test cases for Android apps. Our approach realizes this fusion by offering a high-level, embedded domain-specific language for defining custom generators of simulated user-interaction event sequences. What follows is a combinator library built on industrial strength frameworks for property-based testing (ScalaCheck) and Android testing (Android JUnit and Espresso) to implement property-based randomized testing for Android development. Driven by real, reported issues in open source Android apps, we show, through case studies, how ChimpCheck enables expressing effective testing patterns in a compact manner.Comment: 20 pages, 21 figures, Symposium on New ideas, New Paradigms, and Reflections on Programming and Software (Onward!2017
    • …
    corecore