2,125 research outputs found

    Reverse Engineering Socialbot Infiltration Strategies in Twitter

    Full text link
    Data extracted from social networks like Twitter are increasingly being used to build applications and services that mine and summarize public reactions to events, such as traffic monitoring platforms, identification of epidemic outbreaks, and public perception about people and brands. However, such services are vulnerable to attacks from socialbots −- automated accounts that mimic real users −- seeking to tamper statistics by posting messages generated automatically and interacting with legitimate users. Potentially, if created in large scale, socialbots could be used to bias or even invalidate many existing services, by infiltrating the social networks and acquiring trust of other users with time. This study aims at understanding infiltration strategies of socialbots in the Twitter microblogging platform. To this end, we create 120 socialbot accounts with different characteristics and strategies (e.g., gender specified in the profile, how active they are, the method used to generate their tweets, and the group of users they interact with), and investigate the extent to which these bots are able to infiltrate the Twitter social network. Our results show that even socialbots employing simple automated mechanisms are able to successfully infiltrate the network. Additionally, using a 2k2^k factorial design, we quantify infiltration effectiveness of different bot strategies. Our analysis unveils findings that are key for the design of detection and counter measurements approaches

    Better Safe Than Sorry: An Adversarial Approach to Improve Social Bot Detection

    Full text link
    The arm race between spambots and spambot-detectors is made of several cycles (or generations): a new wave of spambots is created (and new spam is spread), new spambot filters are derived and old spambots mutate (or evolve) to new species. Recently, with the diffusion of the adversarial learning approach, a new practice is emerging: to manipulate on purpose target samples in order to make stronger detection models. Here, we manipulate generations of Twitter social bots, to obtain - and study - their possible future evolutions, with the aim of eventually deriving more effective detection techniques. In detail, we propose and experiment with a novel genetic algorithm for the synthesis of online accounts. The algorithm allows to create synthetic evolved versions of current state-of-the-art social bots. Results demonstrate that synthetic bots really escape current detection techniques. However, they give all the needed elements to improve such techniques, making possible a proactive approach for the design of social bot detection systems.Comment: This is the pre-final version of a paper accepted @ 11th ACM Conference on Web Science, June 30-July 3, 2019, Boston, U

    Report on the Information Retrieval Festival (IRFest2017)

    Get PDF
    The Information Retrieval Festival took place in April 2017 in Glasgow. The focus of the workshop was to bring together IR researchers from the various Scottish universities and beyond in order to facilitate more awareness, increased interaction and reflection on the status of the field and its future. The program included an industry session, research talks, demos and posters as well as two keynotes. The first keynote was delivered by Prof. Jaana Kekalenien, who provided a historical, critical reflection of realism in Interactive Information Retrieval Experimentation, while the second keynote was delivered by Prof. Maarten de Rijke, who argued for more Artificial Intelligence usage in IR solutions and deployments. The workshop was followed by a "Tour de Scotland" where delegates were taken from Glasgow to Aberdeen for the European Conference in Information Retrieval (ECIR 2017
    • …
    corecore