11,723 research outputs found

    Synthetic sequence generator for recommender systems - memory biased random walk on sequence multilayer network

    Full text link
    Personalized recommender systems rely on each user's personal usage data in the system, in order to assist in decision making. However, privacy policies protecting users' rights prevent these highly personal data from being publicly available to a wider researcher audience. In this work, we propose a memory biased random walk model on multilayer sequence network, as a generator of synthetic sequential data for recommender systems. We demonstrate the applicability of the synthetic data in training recommender system models for cases when privacy policies restrict clickstream publishing.Comment: The new updated version of the pape

    Privacy and Confidentiality in an e-Commerce World: Data Mining, Data Warehousing, Matching and Disclosure Limitation

    Full text link
    The growing expanse of e-commerce and the widespread availability of online databases raise many fears regarding loss of privacy and many statistical challenges. Even with encryption and other nominal forms of protection for individual databases, we still need to protect against the violation of privacy through linkages across multiple databases. These issues parallel those that have arisen and received some attention in the context of homeland security. Following the events of September 11, 2001, there has been heightened attention in the United States and elsewhere to the use of multiple government and private databases for the identification of possible perpetrators of future attacks, as well as an unprecedented expansion of federal government data mining activities, many involving databases containing personal information. We present an overview of some proposals that have surfaced for the search of multiple databases which supposedly do not compromise possible pledges of confidentiality to the individuals whose data are included. We also explore their link to the related literature on privacy-preserving data mining. In particular, we focus on the matching problem across databases and the concept of ``selective revelation'' and their confidentiality implications.Comment: Published at http://dx.doi.org/10.1214/088342306000000240 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Location Privacy in Spatial Crowdsourcing

    Full text link
    Spatial crowdsourcing (SC) is a new platform that engages individuals in collecting and analyzing environmental, social and other spatiotemporal information. With SC, requesters outsource their spatiotemporal tasks to a set of workers, who will perform the tasks by physically traveling to the tasks' locations. This chapter identifies privacy threats toward both workers and requesters during the two main phases of spatial crowdsourcing, tasking and reporting. Tasking is the process of identifying which tasks should be assigned to which workers. This process is handled by a spatial crowdsourcing server (SC-server). The latter phase is reporting, in which workers travel to the tasks' locations, complete the tasks and upload their reports to the SC-server. The challenge is to enable effective and efficient tasking as well as reporting in SC without disclosing the actual locations of workers (at least until they agree to perform a task) and the tasks themselves (at least to workers who are not assigned to those tasks). This chapter aims to provide an overview of the state-of-the-art in protecting users' location privacy in spatial crowdsourcing. We provide a comparative study of a diverse set of solutions in terms of task publishing modes (push vs. pull), problem focuses (tasking and reporting), threats (server, requester and worker), and underlying technical approaches (from pseudonymity, cloaking, and perturbation to exchange-based and encryption-based techniques). The strengths and drawbacks of the techniques are highlighted, leading to a discussion of open problems and future work

    Measuring and mitigating AS-level adversaries against Tor

    Full text link
    The popularity of Tor as an anonymity system has made it a popular target for a variety of attacks. We focus on traffic correlation attacks, which are no longer solely in the realm of academic research with recent revelations about the NSA and GCHQ actively working to implement them in practice. Our first contribution is an empirical study that allows us to gain a high fidelity snapshot of the threat of traffic correlation attacks in the wild. We find that up to 40% of all circuits created by Tor are vulnerable to attacks by traffic correlation from Autonomous System (AS)-level adversaries, 42% from colluding AS-level adversaries, and 85% from state-level adversaries. In addition, we find that in some regions (notably, China and Iran) there exist many cases where over 95% of all possible circuits are vulnerable to correlation attacks, emphasizing the need for AS-aware relay-selection. To mitigate the threat of such attacks, we build Astoria--an AS-aware Tor client. Astoria leverages recent developments in network measurement to perform path-prediction and intelligent relay selection. Astoria reduces the number of vulnerable circuits to 2% against AS-level adversaries, under 5% against colluding AS-level adversaries, and 25% against state-level adversaries. In addition, Astoria load balances across the Tor network so as to not overload any set of relays.Comment: Appearing at NDSS 201
    • …
    corecore