26 research outputs found

    Weighted (Co)homology and Weighted Laplacian

    Full text link
    In this paper, we generalize the combinatorial Laplace operator of Horak and Jost by introducing the Ï•\phi-weighted coboundary operator induced by a weight function Ï•\phi. Our weight function Ï•\phi is a generalization of Dawson's weighted boundary map. We show that our above-mentioned generalizations include new cases that are not covered by previous literature. Our definition of weighted Laplacian for weighted simplicial complexes is also applicable to weighted/unweighted graphs and digraphs.Comment: 22 page

    Max-Plus Synchronization in Decentralized Trading Systems

    Full text link
    We introduce a decentralized mechanism for pricing and exchanging alternatives constrained by transaction costs. We characterize the time-invariant solutions of a heat equation involving a (weighted) Tarski Laplacian operator, defined for max-plus matrix-weighted graphs, as approximate equilibria of the trading system. We study algebraic properties of the solution sets as well as convergence behavior of the dynamical system. We apply these tools to the "economic problem" of allocating scarce resources among competing uses. Our theory suggests differences in competitive equilibrium, bargaining, or cost-benefit analysis, depending on the context, are largely due to differences in the way that transaction costs are incorporated into the decision-making process. We present numerical simulations of the synchronization algorithm (RRAggU), demonstrating our theoretical findings

    Cell Attention Networks

    Full text link
    Since their introduction, graph attention networks achieved outstanding results in graph representation learning tasks. However, these networks consider only pairwise relationships among nodes and then they are not able to fully exploit higher-order interactions present in many real world data-sets. In this paper, we introduce Cell Attention Networks (CANs), a neural architecture operating on data defined over the vertices of a graph, representing the graph as the 1-skeleton of a cell complex introduced to capture higher order interactions. In particular, we exploit the lower and upper neighborhoods, as encoded in the cell complex, to design two independent masked self-attention mechanisms, thus generalizing the conventional graph attention strategy. The approach used in CANs is hierarchical and it incorporates the following steps: i) a lifting algorithm that learns {\it edge features} from {\it node features}; ii) a cell attention mechanism to find the optimal combination of edge features over both lower and upper neighbors; iii) a hierarchical {\it edge pooling} mechanism to extract a compact meaningful set of features. The experimental results show that CAN is a low complexity strategy that compares favorably with state of the art results on graph-based learning tasks.Comment: Preprint, under revie

    CIN++: Enhancing Topological Message Passing

    Full text link
    Graph Neural Networks (GNNs) have demonstrated remarkable success in learning from graph-structured data. However, they face significant limitations in expressive power, struggling with long-range interactions and lacking a principled approach to modeling higher-order structures and group interactions. Cellular Isomorphism Networks (CINs) recently addressed most of these challenges with a message passing scheme based on cell complexes. Despite their advantages, CINs make use only of boundary and upper messages which do not consider a direct interaction between the rings present in the underlying complex. Accounting for these interactions might be crucial for learning representations of many real-world complex phenomena such as the dynamics of supramolecular assemblies, neural activity within the brain, and gene regulation processes. In this work, we propose CIN++, an enhancement of the topological message passing scheme introduced in CINs. Our message passing scheme accounts for the aforementioned limitations by letting the cells to receive also lower messages within each layer. By providing a more comprehensive representation of higher-order and long-range interactions, our enhanced topological message passing scheme achieves state-of-the-art results on large-scale and long-range chemistry benchmarks.Comment: 21 pages, 9 figure
    corecore