6 research outputs found

    Toward a language theoretic proof of the four color theorem

    Get PDF
    This paper considers the problem of showing that every pair of binary trees with the same number of leaves parses a common word under a certain simple grammar. We enumerate the common parse words for several infinite families of tree pairs and discuss several ways to reduce the problem of finding a parse word for a pair of trees to that for a smaller pair. The statement that every pair of trees has a common parse word is equivalent to the statement that every planar graph is four-colorable, so the results are a step toward a language theoretic proof of the four color theorem.Comment: 18 pages, many images; final versio

    On a Subposet of the Tamari Lattice

    Get PDF
    We explore some of the properties of a subposet of the Tamari lattice introduced by Pallo, which we call the comb poset. We show that three binary functions that are not well-behaved in the Tamari lattice are remarkably well-behaved within an interval of the comb poset: rotation distance, meets and joins, and the common parse words function for a pair of trees. We relate this poset to a partial order on the symmetric group studied by Edelman.Comment: 21 page

    On a Subposet of the Tamari Lattice

    Get PDF
    We discuss some properties of a subposet of the Tamari lattice introduced by Pallo (1986), which we call the comb poset. We show that three binary functions that are not well-behaved in the Tamari lattice are remarkably well-behaved within an interval of the comb poset: rotation distance, meets and joins, and the common parse words function for a pair of trees. We relate this poset to a partial order on the symmetric group studied by Edelman (1989)

    Hilbert Mathematics Versus Gödel Mathematics. IV. The New Approach of Hilbert Mathematics Easily Resolving the Most Difficult Problems of Gödel Mathematics

    Get PDF
    The paper continues the consideration of Hilbert mathematics to mathematics itself as an additional “dimension” allowing for the most difficult and fundamental problems to be attacked in a new general and universal way shareable between all of them. That dimension consists in the parameter of the “distance between finiteness and infinity”, particularly able to interpret standard mathematics as a particular case, the basis of which are arithmetic, set theory and propositional logic: that is as a special “flat” case of Hilbert mathematics. The following four essential problems are considered for the idea to be elucidated: Fermat’s last theorem proved by Andrew Wiles; Poincaré’s conjecture proved by Grigori Perelman and the only resolved from the seven Millennium problems offered by the Clay Mathematics Institute (CMI); the four-color theorem proved “machine-likely” by enumerating all cases and the crucial software assistance; the Yang-Mills existence and mass gap problem also suggested by CMI and yet unresolved. They are intentionally chosen to belong to quite different mathematical areas (number theory, topology, mathematical physics) just to demonstrate the power of the approach able to unite and even unify them from the viewpoint of Hilbert mathematics. Also, specific ideas relevant to each of them are considered. Fermat’s last theorem is shown as a Gödel insoluble statement by means of Yablo’s paradox. Thus, Wiles’s proof as a corollary from the modularity theorem and thus needing both arithmetic and set theory involves necessarily an inverse Grothendieck universe. On the contrary, its proof in “Fermat arithmetic” introduced by “epoché to infinity” (following the pattern of Husserl’s original “epoché to reality”) can be suggested by Hilbert arithmetic relevant to Hilbert mathematics, the mediation of which can be removed in the final analysis as a “Wittgenstein ladder”. Poincaré’s conjecture can be reinterpreted physically by Minkowski space and thus reduced to the “nonstandard homeomorphism” of a bit of information mathematically. Perelman’s proof can be accordingly reinterpreted. However, it is valid in Gödel (or Gödelian) mathematics, but not in Hilbert mathematics in general, where the question of whether it holds remains open. The four-color theorem can be also deduced from the nonstandard homeomorphism at issue, but the available proof by enumerating a finite set of all possible cases is more general and relevant to Hilbert mathematics as well, therefore being an indirect argument in favor of the validity of Poincaré’s conjecture in Hilbert mathematics. The Yang-Mills existence and mass gap problem furthermore suggests the most general viewpoint to the relation of Hilbert and Gödel mathematics justifying the qubit Hilbert space as the dual counterpart of Hilbert arithmetic in a narrow sense, in turn being inferable from Hilbert arithmetic in a wide sense. The conjecture that many if not almost all great problems in contemporary mathematics rely on (or at least relate to) the Gödel incompleteness is suggested. It implies that Hilbert mathematics is the natural medium for their discussion or eventual solutions

    Toward a Language Theoretic Proof of the Four Color Theorem, arXiv:1006.1324v1, preprint

    No full text
    Abstract. This paper considers the problem of showing that every pair of binary trees with the same number of leaves parses a common word under a certain simple grammar. We enumerate the common parse words for several infinite families of tree pairs and discuss several ways to reduce the problem of finding a parse word for a pair of trees to that for a smaller pair. The statement that every pair of trees has a common parse word is equivalent to the statement that every planar graph is four-colorable, so the results are a step toward a language theoretic proof of the four color theorem
    corecore