101,935 research outputs found

    Systems biology in animal sciences

    Get PDF
    Systems biology is a rapidly expanding field of research and is applied in a number of biological disciplines. In animal sciences, omics approaches are increasingly used, yielding vast amounts of data, but systems biology approaches to extract understanding from these data of biological processes and animal traits are not yet frequently used. This paper aims to explain what systems biology is and which areas of animal sciences could benefit from systems biology approaches. Systems biology aims to understand whole biological systems working as a unit, rather than investigating their individual components. Therefore, systems biology can be considered a holistic approach, as opposed to reductionism. The recently developed ‘omics’ technologies enable biological sciences to characterize the molecular components of life with ever increasing speed, yielding vast amounts of data. However, biological functions do not follow from the simple addition of the properties of system components, but rather arise from the dynamic interactions of these components. Systems biology combines statistics, bioinformatics and mathematical modeling to integrate and analyze large amounts of data in order to extract a better understanding of the biology from these huge data sets and to predict the behavior of biological systems. A ‘system’ approach and mathematical modeling in biological sciences are not new in itself, as they were used in biochemistry, physiology and genetics long before the name systems biology was coined. However, the present combination of mass biological data and of computational and modeling tools is unprecedented and truly represents a major paradigm shift in biology. Significant advances have been made using systems biology approaches, especially in the field of bacterial and eukaryotic cells and in human medicine. Similarly, progress is being made with ‘system approaches’ in animal sciences, providing exciting opportunities to predict and modulate animal traits

    Curriculum Guidelines for Undergraduate Programs in Data Science

    Get PDF
    The Park City Math Institute (PCMI) 2016 Summer Undergraduate Faculty Program met for the purpose of composing guidelines for undergraduate programs in Data Science. The group consisted of 25 undergraduate faculty from a variety of institutions in the U.S., primarily from the disciplines of mathematics, statistics and computer science. These guidelines are meant to provide some structure for institutions planning for or revising a major in Data Science

    Stochastic multi-period multi-product multi-objective Aggregate Production Planning model in multi-echelon supply chain

    Get PDF
    In this paper a multi-period multi-product multi-objective aggregate production planning (APP) model is proposed for an uncertain multi-echelon supply chain considering financial risk, customer satisfaction, and human resource training. Three conflictive objective functions and several sets of real constraints are considered concurrently in the proposed APP model. Some parameters of the proposed model are assumed to be uncertain and handled through a two-stage stochastic programming (TSSP) approach. The proposed TSSP is solved using three multi-objective solution procedures, i.e., the goal attainment technique, the modified ε-constraint method, and STEM method. The whole procedure is applied in an automotive resin and oil supply chain as a real case study wherein the efficacy and applicability of the proposed approaches are illustrated in comparison with existing experimental production planning method

    Technologies to develop technology: the impact of new technologies on the organisation of the innovation process.

    Get PDF
    Companies are under increasing pressure to develop new product more effectively and efficiently. In order to meet this challenge, the organisation of the new product development process has received ample attention both in the academic literature and in the practitioner literature. As a consequence, a myriad of methods to design new products has been developed. These methods aim at facilitating concurrent product design and engineering. However, it is only recently, through the advent of families of new design technologies, that concurrency really becomes possible. In this paper, research on the impact of new design technologies on the product development process is reported and discussed. It is demonstrated that these technologies can have a significant impact on the organisation of innovation processes.Processes;

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Technology assessment of advanced automation for space missions

    Get PDF
    Six general classes of technology requirements derived during the mission definition phase of the study were identified as having maximum importance and urgency, including autonomous world model based information systems, learning and hypothesis formation, natural language and other man-machine communication, space manufacturing, teleoperators and robot systems, and computer science and technology

    A communication channel model of the software process

    Get PDF
    Beginning research into a noisy communication channel analogy of software development process productivity, in order to establish quantifiable behavior and theoretical bounds is discussed. The analogy leads to a fundamental mathematical relationship between human productivity and the amount of information supplied by the developers, the capacity of the human channel for processing and transmitting information, the software product yield (object size) the work effort, requirements efficiency, tool and process efficiency, and programming environment advantage. An upper bound to productivity is derived that shows that software reuse is the only means that can lead to unbounded productivity growth; practical considerations of size and cost of reusable components may reduce this to a finite bound

    Crossing the death valley to transfer environmental decision support systems to the water market

    Get PDF
    Environmental decision support systems (EDSSs) are attractive tools to cope with the complexity of environmental global challenges. Several thoughtful reviews have analyzed EDSSs to identify the key challenges and best practices for their development. One of the major criticisms is that a wide and generalized use of deployed EDSSs has not been observed. The paper briefly describes and compares four case studies of EDSSs applied to the water domain, where the key aspects involved in the initial conception and the use and transfer evolution that determine the final success or failure of these tools (i.e., market uptake) are identified. Those aspects that contribute to bridging the gap between the EDSS science and the EDSS market are highlighted in the manuscript. Experience suggests that the construction of a successful EDSS should focus significant efforts on crossing the death-valley toward a general use implementation by society (the market) rather than on development.The authors would like to thank the Catalan Water Agency (Agència Catalana de l’Aigua), Besòs River Basin Regional Administration (Consorci per la Defensa de la Conca del Riu Besòs), SISLtech, and Spanish Ministry of Science and Innovation for providing funding (CTM2012-38314-C02-01 and CTM2015-66892-R). LEQUIA, KEMLG, and ICRA were recognized as consolidated research groups by the Catalan Government under the codes 2014-SGR-1168, 2013-SGR-1304 and 2014-SGR-291.Peer ReviewedPostprint (published version

    Mathematical skills in the workplace: final report to the Science Technology and Mathematics Council

    Get PDF
    • …
    corecore