11 research outputs found

    Toward Massive MIMO 2.0: Understanding Spatial Correlation, Interference Suppression, and Pilot Contamination

    Get PDF
    Since the seminal paper by Marzetta from 2010, Massive MIMO has changed from being a theoretical concept with an infinite number of antennas to a practical technology. The key concepts are adopted into the 5G New Radio Standard and base stations (BSs) with M = 64 fully digital transceivers have been commercially deployed in sub-6GHz bands. The fast progress was enabled by many solid research contributions of which the vast majority assume spatially uncorrelated channels and signal processing schemes developed for single-cell operation. These assumptions make the performance analysis and optimization of Massive MIMO tractable but have three major caveats: 1) practical channels are spatially correlated; 2) large performance gains can be obtained by multicell processing, without BS cooperation; 3) the interference caused by pilot contamination creates a finite capacity limit, as M → ∞. There is a thin line of papers that avoided these caveats, but the results are easily missed. Hence, this tutorial article explains the importance of considering spatial channel correlation and using signal processing schemes designed for multicell networks. We present recent results on the fundamental limits of Massive MIMO, which are not determined by pilot contamination but the ability to acquire channel statistics. These results will guide the journey towards the next level of Massive MIMO, which we call "Massive MIMO 2.0"

    Joint QoS-Aware Scheduling and Precoding for Massive MIMO Systems via Deep Reinforcement Learning

    Full text link
    The rapid development of mobile networks proliferates the demands of high data rate, low latency, and high-reliability applications for the fifth-generation (5G) and beyond (B5G) mobile networks. Concurrently, the massive multiple-input-multiple-output (MIMO) technology is essential to realize the vision and requires coordination with resource management functions for high user experiences. Though conventional cross-layer adaptation algorithms have been developed to schedule and allocate network resources, the complexity of resulting rules is high with diverse quality of service (QoS) requirements and B5G features. In this work, we consider a joint user scheduling, antenna allocation, and precoding problem in a massive MIMO system. Instead of directly assigning resources, such as the number of antennas, the allocation process is transformed into a deep reinforcement learning (DRL) based dynamic algorithm selection problem for efficient Markov decision process (MDP) modeling and policy training. Specifically, the proposed utility function integrates QoS requirements and constraints toward a long-term system-wide objective that matches the MDP return. The componentized action structure with action embedding further incorporates the resource management process into the model. Simulations show 7.2% and 12.5% more satisfied users against static algorithm selection and related works under demanding scenarios

    Channel Hardening in Massive MIMO: Model Parameters and Experimental Assessment

    Full text link
    Reliability is becoming increasingly important for many applications envisioned for future wireless systems. A technology that could improve reliability in these systems is massive MIMO (Multiple-Input Multiple-Output). One reason for this is a phenomenon called channel hardening, which means that as the number of antennas in the system increases, the variations of channel gain decrease in both the time- and frequency domain. Our analysis of channel hardening is based on a joint comparison of theory, measurements and simulations. Data from measurement campaigns including both indoor and outdoor scenarios, as well as cylindrical and planar base station arrays, are analyzed. The simulation analysis includes a comparison with the COST 2100 channel model with its massive MIMO extension. The conclusion is that the COST 2100 model is well suited to represent real scenarios, and provides a reasonable match to actual measurements up to the uncertainty of antenna patterns and user interaction. Also, the channel hardening effect in practical massive MIMO channels is less pronounced than in complex independent and identically distributed (i.i.d.) Gaussian channels, which are often considered in theoretical work.Comment: Accepted to IEEE Open Journal of the Communications Societ

    IRS-assisted UAV Communications: A Comprehensive Review

    Full text link
    Intelligent reflecting surface (IRS) can smartly adjust the wavefronts in terms of phase, frequency, amplitude and polarization via passive reflections and without any need of radio frequency (RF) chains. It is envisaged as an emerging technology which can change wireless communication to improve both energy and spectrum efficiencies with low energy consumption and low cost. It can intelligently configure the wireless channels through a massive number of cost effective passive reflecting elements to improve the system performance. Similarly, unmanned aerial vehicle (UAV) communication has gained a viable attention due to flexible deployment, high mobility and ease of integration with several technologies. However, UAV communication is prone to security issues and obstructions in real-time applications. Recently, it is foreseen that UAV and IRS both can integrate together to attain unparalleled capabilities in difficult scenarios. Both technologies can ensure improved performance through proactively altering the wireless propagation using smart signal reflections and maneuver control in three dimensional (3D) space. IRS can be integrated in both aerial and terrene environments to reap the benefits of smart reflections. This study briefly discusses UAV communication, IRS and focuses on IRS-assisted UAC communications. It surveys the existing literature on this emerging research topic and highlights several promising technologies which can be implemented in IRS-assisted UAV communication. This study also presents several application scenarios and open research challenges. This study goes one step further to elaborate research opportunities to design and optimize wireless systems with low energy footprint and at low cost. Finally, we shed some light on future research aspects for IRS-assisted UAV communication

    Space-Air-Ground Integrated 6G Wireless Communication Networks: A Review of Antenna Technologies and Application Scenarios

    Get PDF
    A review of technological solutions and advances in the framework of a Vertical Heterogeneous Network (VHetNet) integrating satellite, airborne and terrestrial networks is presented. The disruptive features and challenges offered by a fruitful cooperation among these segments within a ubiquitous and seamless wireless connectivity are described. The available technologies and the key research directions for achieving global wireless coverage by considering all these layers are thoroughly discussed. Emphasis is placed on the available antenna systems in satellite, airborne and ground layers by highlighting strengths and weakness and by providing some interesting trends in research. A summary of the most suitable applicative scenarios for future 6G wireless communications are finally illustrated

    6G Wireless Systems: Vision, Requirements, Challenges, Insights, and Opportunities

    Full text link
    Mobile communications have been undergoing a generational change every ten years or so. However, the time difference between the so-called "G's" is also decreasing. While fifth-generation (5G) systems are becoming a commercial reality, there is already significant interest in systems beyond 5G, which we refer to as the sixth-generation (6G) of wireless systems. In contrast to the already published papers on the topic, we take a top-down approach to 6G. We present a holistic discussion of 6G systems beginning with lifestyle and societal changes driving the need for next generation networks. This is followed by a discussion into the technical requirements needed to enable 6G applications, based on which we dissect key challenges, as well as possibilities for practically realizable system solutions across all layers of the Open Systems Interconnection stack. Since many of the 6G applications will need access to an order-of-magnitude more spectrum, utilization of frequencies between 100 GHz and 1 THz becomes of paramount importance. As such, the 6G eco-system will feature a diverse range of frequency bands, ranging from below 6 GHz up to 1 THz. We comprehensively characterize the limitations that must be overcome to realize working systems in these bands; and provide a unique perspective on the physical, as well as higher layer challenges relating to the design of next generation core networks, new modulation and coding methods, novel multiple access techniques, antenna arrays, wave propagation, radio-frequency transceiver design, as well as real-time signal processing. We rigorously discuss the fundamental changes required in the core networks of the future that serves as a major source of latency for time-sensitive applications. While evaluating the strengths and weaknesses of key 6G technologies, we differentiate what may be achievable over the next decade, relative to what is possible.Comment: Accepted for Publication into the Proceedings of the IEEE; 32 pages, 10 figures, 5 table
    corecore