2 research outputs found

    Toward Cross-Domain Speech Recognition with End-to-End Models

    Full text link
    In the area of multi-domain speech recognition, research in the past focused on hybrid acoustic models to build cross-domain and domain-invariant speech recognition systems. In this paper, we empirically examine the difference in behavior between hybrid acoustic models and neural end-to-end systems when mixing acoustic training data from several domains. For these experiments we composed a multi-domain dataset from public sources, with the different domains in the corpus covering a wide variety of topics and acoustic conditions such as telephone conversations, lectures, read speech and broadcast news. We show that for the hybrid models, supplying additional training data from other domains with mismatched acoustic conditions does not increase the performance on specific domains. However, our end-to-end models optimized with sequence-based criterion generalize better than the hybrid models on diverse domains. In term of word-error-rate performance, our experimental acoustic-to-word and attention-based models trained on multi-domain dataset reach the performance of domain-specific long short-term memory (LSTM) hybrid models, thus resulting in multi-domain speech recognition systems that do not suffer in performance over domain specific ones. Moreover, the use of neural end-to-end models eliminates the need of domain-adapted language models during recognition, which is a great advantage when the input domain is unknown.Comment: Presented in Life-Long Learning for Spoken Language Systems Workshop - ASRU 201

    Towards Lifelong Learning of End-to-end ASR

    Full text link
    Automatic speech recognition (ASR) technologies today are primarily optimized for given datasets; thus, any changes in the application environment (e.g., acoustic conditions or topic domains) may inevitably degrade the performance. We can collect new data describing the new environment and fine-tune the system, but this naturally leads to higher error rates for the earlier datasets, referred to as catastrophic forgetting. The concept of lifelong learning (LLL) aiming to enable a machine to sequentially learn new tasks from new datasets describing the changing real world without forgetting the previously learned knowledge is thus brought to attention. This paper reports, to our knowledge, the first effort to extensively consider and analyze the use of various approaches of LLL in end-to-end (E2E) ASR, including proposing novel methods in saving data for past domains to mitigate the catastrophic forgetting problem. An overall relative reduction of 28.7% in WER was achieved compared to the fine-tuning baseline when sequentially learning on three very different benchmark corpora. This can be the first step toward the highly desired ASR technologies capable of synchronizing with the continuously changing real world.Comment: Interspeech 2021. We acknowledge the support of Salesforce Research Deep Learning Gran
    corecore