366 research outputs found

    Toward Convolutional Blind Denoising of Real Photographs

    Full text link
    While deep convolutional neural networks (CNNs) have achieved impressive success in image denoising with additive white Gaussian noise (AWGN), their performance remains limited on real-world noisy photographs. The main reason is that their learned models are easy to overfit on the simplified AWGN model which deviates severely from the complicated real-world noise model. In order to improve the generalization ability of deep CNN denoisers, we suggest training a convolutional blind denoising network (CBDNet) with more realistic noise model and real-world noisy-clean image pairs. On the one hand, both signal-dependent noise and in-camera signal processing pipeline is considered to synthesize realistic noisy images. On the other hand, real-world noisy photographs and their nearly noise-free counterparts are also included to train our CBDNet. To further provide an interactive strategy to rectify denoising result conveniently, a noise estimation subnetwork with asymmetric learning to suppress under-estimation of noise level is embedded into CBDNet. Extensive experimental results on three datasets of real-world noisy photographs clearly demonstrate the superior performance of CBDNet over state-of-the-arts in terms of quantitative metrics and visual quality. The code has been made available at https://github.com/GuoShi28/CBDNet

    Real Image Denoising with Feature Attention

    Full text link
    Deep convolutional neural networks perform better on images containing spatially invariant noise (synthetic noise); however, their performance is limited on real-noisy photographs and requires multiple stage network modeling. To advance the practicability of denoising algorithms, this paper proposes a novel single-stage blind real image denoising network (RIDNet) by employing a modular architecture. We use a residual on the residual structure to ease the flow of low-frequency information and apply feature attention to exploit the channel dependencies. Furthermore, the evaluation in terms of quantitative metrics and visual quality on three synthetic and four real noisy datasets against 19 state-of-the-art algorithms demonstrate the superiority of our RIDNet.Comment: Accepted in ICCV (Oral), 201

    Model-blind Video Denoising Via Frame-to-frame Training

    Full text link
    Modeling the processing chain that has produced a video is a difficult reverse engineering task, even when the camera is available. This makes model based video processing a still more complex task. In this paper we propose a fully blind video denoising method, with two versions off-line and on-line. This is achieved by fine-tuning a pre-trained AWGN denoising network to the video with a novel frame-to-frame training strategy. Our denoiser can be used without knowledge of the origin of the video or burst and the post processing steps applied from the camera sensor. The on-line process only requires a couple of frames before achieving visually-pleasing results for a wide range of perturbations. It nonetheless reaches state of the art performance for standard Gaussian noise, and can be used off-line with still better performance.Comment: CVPR 201

    GRDN:Grouped Residual Dense Network for Real Image Denoising and GAN-based Real-world Noise Modeling

    Full text link
    Recent research on image denoising has progressed with the development of deep learning architectures, especially convolutional neural networks. However, real-world image denoising is still very challenging because it is not possible to obtain ideal pairs of ground-truth images and real-world noisy images. Owing to the recent release of benchmark datasets, the interest of the image denoising community is now moving toward the real-world denoising problem. In this paper, we propose a grouped residual dense network (GRDN), which is an extended and generalized architecture of the state-of-the-art residual dense network (RDN). The core part of RDN is defined as grouped residual dense block (GRDB) and used as a building module of GRDN. We experimentally show that the image denoising performance can be significantly improved by cascading GRDBs. In addition to the network architecture design, we also develop a new generative adversarial network-based real-world noise modeling method. We demonstrate the superiority of the proposed methods by achieving the highest score in terms of both the peak signal-to-noise ratio and the structural similarity in the NTIRE2019 Real Image Denoising Challenge - Track 2:sRGB.Comment: To appear in CVPR 2019 workshop. The winners of the NTIRE2019 Challenge on Image Denoising Challenge: Track 2 sRG

    Generating Training Data for Denoising Real RGB Images via Camera Pipeline Simulation

    Full text link
    Image reconstruction techniques such as denoising often need to be applied to the RGB output of cameras and cellphones. Unfortunately, the commonly used additive white noise (AWGN) models do not accurately reproduce the noise and the degradation encountered on these inputs. This is particularly important for learning-based techniques, because the mismatch between training and real world data will hurt their generalization. This paper aims to accurately simulate the degradation and noise transformation performed by camera pipelines. This allows us to generate realistic degradation in RGB images that can be used to train machine learning models. We use our simulation to study the importance of noise modeling for learning-based denoising. Our study shows that a realistic noise model is required for learning to denoise real JPEG images. A neural network trained on realistic noise outperforms the one trained with AWGN by 3 dB. An ablation study of our pipeline shows that simulating denoising and demosaicking is important to this improvement and that realistic demosaicking algorithms, which have been rarely considered, is needed. We believe this simulation will also be useful for other image reconstruction tasks, and we will distribute our code publicly

    Path-Restore: Learning Network Path Selection for Image Restoration

    Full text link
    Very deep Convolutional Neural Networks (CNNs) have greatly improved the performance on various image restoration tasks. However, this comes at a price of increasing computational burden, hence limiting their practical usages. We observe that some corrupted image regions are inherently easier to restore than others since the distortion and content vary within an image. To leverage this, we propose Path-Restore, a multi-path CNN with a pathfinder that can dynamically select an appropriate route for each image region. We train the pathfinder using reinforcement learning with a difficulty-regulated reward. This reward is related to the performance, complexity and "the difficulty of restoring a region". A policy mask is further investigated to jointly process all the image regions. We conduct experiments on denoising and mixed restoration tasks. The results show that our method achieves comparable or superior performance to existing approaches with less computational cost. In particular, Path-Restore is effective for real-world denoising, where the noise distribution varies across different regions on a single image. Compared to the state-of-the-art RIDNet, our method achieves comparable performance and runs 2.7x faster on the realistic Darmstadt Noise Dataset.Comment: IEEE TPAMI 2021. Project page: https://www.mmlab-ntu.com/project/pathrestore

    Segmentation-Aware Image Denoising without Knowing True Segmentation

    Full text link
    Several recent works discussed application-driven image restoration neural networks, which are capable of not only removing noise in images but also preserving their semantic-aware details, making them suitable for various high-level computer vision tasks as the pre-processing step. However, such approaches require extra annotations for their high-level vision tasks, in order to train the joint pipeline using hybrid losses. The availability of those annotations is yet often limited to a few image sets, potentially restricting the general applicability of these methods to denoising more unseen and unannotated images. Motivated by that, we propose a segmentation-aware image denoising model dubbed U-SAID, based on a novel unsupervised approach with a pixel-wise uncertainty loss. U-SAID does not need any ground-truth segmentation map, and thus can be applied to any image dataset. It generates denoised images with comparable or even better quality, and the denoised results show stronger robustness for subsequent semantic segmentation tasks, when compared to either its supervised counterpart or classical "application-agnostic" denoisers. Moreover, we demonstrate the superior generalizability of U-SAID in three-folds, by plugging its "universal" denoiser without fine-tuning: (1) denoising unseen types of images; (2) denoising as pre-processing for segmenting unseen noisy images; and (3) denoising for unseen high-level tasks. Extensive experiments demonstrate the effectiveness, robustness and generalizability of the proposed U-SAID over various popular image sets

    ViDeNN: Deep Blind Video Denoising

    Full text link
    We propose ViDeNN: a CNN for Video Denoising without prior knowledge on the noise distribution (blind denoising). The CNN architecture uses a combination of spatial and temporal filtering, learning to spatially denoise the frames first and at the same time how to combine their temporal information, handling objects motion, brightness changes, low-light conditions and temporal inconsistencies. We demonstrate the importance of the data used for CNNs training, creating for this purpose a specific dataset for low-light conditions. We test ViDeNN on common benchmarks and on self-collected data, achieving good results comparable with the state-of-the-art.Comment: Submission of NTIRE: New Trends in Image Restoration and Enhancement workshop and challenges at CVPR 201

    Joint Demosaicking and Denoising by Fine-Tuning of Bursts of Raw Images

    Full text link
    Demosaicking and denoising are the first steps of any camera image processing pipeline and are key for obtaining high quality RGB images. A promising current research trend aims at solving these two problems jointly using convolutional neural networks. Due to the unavailability of ground truth data these networks cannot be currently trained using real RAW images. Instead, they resort to simulated data. In this paper we present a method to learn demosaicking directly from mosaicked images, without requiring ground truth RGB data. We apply this to learn joint demosaicking and denoising only from RAW images, thus enabling the use of real data. In addition we show that for this application fine-tuning a network to a specific burst improves the quality of restoration for both demosaicking and denoising.Comment: ICCV 201

    CFSNet: Toward a Controllable Feature Space for Image Restoration

    Full text link
    Deep learning methods have witnessed the great progress in image restoration with specific metrics (e.g., PSNR, SSIM). However, the perceptual quality of the restored image is relatively subjective, and it is necessary for users to control the reconstruction result according to personal preferences or image characteristics, which cannot be done using existing deterministic networks. This motivates us to exquisitely design a unified interactive framework for general image restoration tasks. Under this framework, users can control continuous transition of different objectives, e.g., the perception-distortion trade-off of image super-resolution, the trade-off between noise reduction and detail preservation. We achieve this goal by controlling the latent features of the designed network. To be specific, our proposed framework, named Controllable Feature Space Network (CFSNet), is entangled by two branches based on different objectives. Our framework can adaptively learn the coupling coefficients of different layers and channels, which provides finer control of the restored image quality. Experiments on several typical image restoration tasks fully validate the effective benefits of the proposed method. Code is available at https://github.com/qibao77/CFSNet.Comment: Accepted by ICCV 201
    • …
    corecore