22 research outputs found

    Directed Minors III. Directed Linked Decompositions

    Full text link
    Thomas proved that every undirected graph admits a linked tree decomposition of width equal to its treewidth. In this paper, we generalize Thomas's theorem to digraphs. We prove that every digraph G admits a linked directed path decomposition and a linked DAG decomposition of width equal to its directed pathwidth and DAG-width respectively

    Hitting minors, subdivisions, and immersions in tournaments

    Full text link
    The Erd\H{o}s-P\'osa property relates parameters of covering and packing of combinatorial structures and has been mostly studied in the setting of undirected graphs. In this note, we use results of Chudnovsky, Fradkin, Kim, and Seymour to show that, for every directed graph HH (resp. strongly-connected directed graph HH), the class of directed graphs that contain HH as a strong minor (resp. butterfly minor, topological minor) has the vertex-Erd\H{o}s-P\'osa property in the class of tournaments. We also prove that if HH is a strongly-connected directed graph, the class of directed graphs containing HH as an immersion has the edge-Erd\H{o}s-P\'osa property in the class of tournaments.Comment: Accepted to Discrete Mathematics & Theoretical Computer Science. Difference with the previous version: use of the DMTCS article class. For a version with hyperlinks see the previous versio

    Forbidden Directed Minors and Kelly-width

    Full text link
    Partial 1-trees are undirected graphs of treewidth at most one. Similarly, partial 1-DAGs are directed graphs of KellyWidth at most two. It is well-known that an undirected graph is a partial 1-tree if and only if it has no K_3 minor. In this paper, we generalize this characterization to partial 1-DAGs. We show that partial 1-DAGs are characterized by three forbidden directed minors, K_3, N_4 and M_5

    On the pathwidth of almost semicomplete digraphs

    Full text link
    We call a digraph {\em hh-semicomplete} if each vertex of the digraph has at most hh non-neighbors, where a non-neighbor of a vertex vv is a vertex u≠vu \neq v such that there is no edge between uu and vv in either direction. This notion generalizes that of semicomplete digraphs which are 00-semicomplete and tournaments which are semicomplete and have no anti-parallel pairs of edges. Our results in this paper are as follows. (1) We give an algorithm which, given an hh-semicomplete digraph GG on nn vertices and a positive integer kk, in (h+2k+1)2knO(1)(h + 2k + 1)^{2k} n^{O(1)} time either constructs a path-decomposition of GG of width at most kk or concludes correctly that the pathwidth of GG is larger than kk. (2) We show that there is a function f(k,h)f(k, h) such that every hh-semicomplete digraph of pathwidth at least f(k,h)f(k, h) has a semicomplete subgraph of pathwidth at least kk. One consequence of these results is that the problem of deciding if a fixed digraph HH is topologically contained in a given hh-semicomplete digraph GG admits a polynomial-time algorithm for fixed hh.Comment: 33pages, a shorter version to appear in ESA 201
    corecore